S AD=AD35 448 NAVAL OBSERVATORY WASHINGTON D C
FORTRAN AUTOMATIC TYPESETTING SYSTEM (FATS),(U)
AUG 74 P M JANICZEK: G H KAPLAN

UNCLASSIFIED NOBS=CIRC=149 DOD/DF=77/001A

| OFI
035448

END
DATE
FILMED
32577
NTIS

r—r——p e T . v g om TR a s s T 50

"F/6 14/5

L L4

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-A035 448

FORTRAN AUTOMATIC TYPESETTING SYSTEM (FATS)

NavaL OBSERVATORY

WasHingTON, D.C,

17 Aucust 1974

~

L

AD A 035 L8

UNITED STATES NAVAL 0BSERVATORY

CIRCULAR N 0. 149

U.S. Naval Observatory, Washington, D. C. 20390 August 17, 1974

FORTRAN AUTOMATIC TYPESETTING SYSTEM

by

P. M. Janiczek and G.H. Kaplan

ESIE———————

Preface

During the year 1940 the Nautical Almanac Office of the U. S. Naval Observatory became the first
government organization to introduce punched-card electric accounting machine equipment for scien-
tific computation and the production of printer's copy for its publications. Printer's copy for the
Air Almanac 1941 was produced by this equipment and, commencing with the Air Almanac 1942,
camera copy for offset printing was automatically prepared on a 401 tabulator (““Air Almanacs” by
W. J. Eckert; SKY AND TELESCOPE vol. IV, No. 1, Nov. 1944).

Beginning with the Air Almanac 1946, camera copy of improved quality was produced by a specially
designed card-operated typewriter (“The Printing of Mathematical Tables” by W. J. Eckert and R. F. Haupt;
MATHEMATICAL TABLES AND OTHER AIDS TO COMPUTATION, vol. I, No. 17, Jan. 1947).

In 1962 the Nautical Almanac Office was the first agency in the Department of Defense to bridge the
gap between electronic data processing and automatic phota-compasition for offset printing (“Printing
of Astronomical and Sight Reduction Tables” by R. L. Duncombe and R. F. Haupt; Navigation, vol. 12,
No. 2, Summer 1965). Since that time the Nautical Almanac Office has composed on the Linofilm and/
or Linotron equipment of the Government Printing Office over 15,000 pages of astronomical and navi-
gational tables.

The power and flexibility of the Linotron Photocomposing Machine was made more accessible by
the appearance in 1968 of “A Linotron System Manual for the Photocompasition of Astronomical and
Mathematical Tables” by D. K. Scott (U.S. Naval Observatory Circufar No. 121). The subroutines pre-
sented in that manual allow the preparation of magnetic tapes for Linotron that gperate the machine
directly. The principal disadvantage of the subroutines, however, is that they require a knowledge of
IBM System 360 Assembler Language.

This instruction manual immediately makes the Linotron photocomposition system available to the
multitude of programmers who understand and use Fortran and other high level languages. The care-
fully prepared subroutines presented here mark a milestone in the continuing program of the Nautical
Almanac Office to enhance, and improve upon, the methods for efficient and accurate preparation of
astronomical and navigational tables. However, the routines were designed with a flexibility that is more
than adequate for an extensive variety of tabular presentations.

Inquiries regarding this manual and the availability of the programming subroutines described should
be directed to the undersigned or to the authors.

Throughout the course of this development program, the Nautical Almanac Office has received
encouragement fram the late Public Printer, Mr. A, N. Spense, and from the Deputy Public Printer
Mr. John Boyle.

R. L. Duncombe
Director
Nautical Almanac Office

\J

1. Rc;)ort No.
DOD/DF-77/001a

BIBLIOGRAPHIC DATA
SHEET

0.

% aD A 035 118

4. Title and Subtitle

FORTRAN Automatic Typesetting System

5. Report Date

Auvg. 17, 1974
6.

7. Author(s)
P.M, Janiczek and G.H. Kaplan

8. Performing Organization Rept.
No.

9. Performing Organization Name and Address
Nautical Almanac Office
U.S. Naval Observatory
Washington, D.C. 20390

10. Project/Task/Work Unit No.

11. Contract/Grant No.

12. Sponsoring Organization Name and Address

Nautical Almanac Office
U.S. Naval Observatory
Washington, D.C. 20390

13. Type of Report & Period
Covered

14,

15. Supplementary Notes

For Magnetic Tape, see

AD A 035LL9

16. Abstracts

FATS is a system of subroutines, accessable from FORTRAN and other high-level
languages, which generate the control tapes for GPO's Linotron electronic
typesetting machine. The routines have been designed for mainly tabulas
composition, primarily scientific and mathematical tables.

FATS greatly expands the number of Linotron users to include programmers familiar
with FORTRAN, PL1, etc., but it may be easily accessed by assembly language.

It also minimizes the requirement for an intimate knowledge of Linotron function
and control codes.

17. Key

Words and Document Analysis. 17a. Descriptors

Tabular Composition

Linotron
Electronic Typesetting

17b. Identifiers/Open-Ended Terms

17¢. COSATI Field ‘Group
18. Availability Statement REPRODUCED BY 19. Security Class (This 21. No. of Pages
NATIONAL TECHNICAL Report) o 71
B 1B
INFORMATION SERVICE 20. Security Class (This 22 Price
U.S. DEPARTMENT OF COMMERCE Page " , A
SPRINGFIELD, VA. 22161 UNCLASSIFIED A

FORM NTIS-38 (REV

10-73) ENDORSED BY ANSI AND UNESCO. THIS FORM MAY BE REPRODUCED USCOMM-DC B265-P74

SECTION |

GENERAL DISCUSSION

INTRODUCTION

Today, a substantial amount of printed matter represents information which, at some time, existed in
computer coded form. Since the infancy of computer technology, there has been a recognition of the need
to expeditiously transform information from machine recognizable form to printed pages. Some material
has been, and is still, reproduced directly from computer printout, but printing from such copy has also intro-
duced problems. It is easily realized that this form of publishing decreases computer efficiency, adds to press
and binding costs, sacrifices quality and readability, and results in the handling and storage of greater bulk at
every level. The Government Printing Office Electranic Compasing System affers a solution to these problems
by providing an inexpensive and direct link between computer and printed page.

At the heart of the system is the electronic photo-typesetting machine, Linotron, which can set type at
speeds up to 1000 characters per second. Input to the Linotron consists of a magnetic tape containing control
characters and formatted data. Output may be in the form of proof pages, opaque positives, or photographic
negatives. This device may be considered analogous to a special purpose computer. In that context, it is recog-
nized that realistic and efficient utilization requires a means for translating user-intelligible programming
language and data into Linotron control and data code characters. Part of the Electronic Composing System
at the Government Printing Otfice, therefare, is a general purpose computer. Its task is to execute the Master
Typography Program, MTP, which performs the functions of a compositor, and constructs the command se-
quences for input to the Linotron. Because of its flexibility and text orientation, the MTP is a complex series
of routines requiring a parametrization of format specifications and the editing of input data prior to its exe-
cution.

Many government publications are devoted to the presentation of information in tabular form. U.S.
Naval Observatory publfications are examples. For this reason, it has become expedient to develop computer
subroutines oriented to tabular formats as a means of directly producing Linotron control tapes, including
one pass data editing and formatting at the user facility. This direct conversion of user data files into Linotron
format, with the automatic insertion of composition control codes, bypasses the MTP. This approach mini-
mizes computer use as well as transportation costs, and reduces the time required for task completion.

One system of computer routines has been described in U. S. Naval Observatory Circular No. 121. These
are coded in IBM System 360 Assembly Language, and they are optimum in terms of execution time and stor-
age requirements. The Nautical Almanac, and Air Almanac are photo-composed with the aid of this system.
The use of these routines, however, requires 3 familiarity with assembly language, its program layout, and
hexadecimal notation.

The Fortran Automatic Typesetting System, FATS, described in this Circular, greatly expands the number
of Linotron users to include programmers familiar with Fortran, PLT, etc., but it may be easily accessed by
assembly language. It also minimizes the requirement for an intimate knowledge of Linotron function and
control codes. Therefore, in the description of FATS which follows, specific attention is given only to those
details of actual Linotron operation which a2 essential. Additional details are presented for information pur-
poses only. The presentation is oriented to user viewpoint and logic; detailed optical and electro-mechanical
operations of Linotron are beyond the present scope.

FATS is application oriented, but is not a special purpose programming language, and it requires no new
vocabulary and syntax. It is a system of interdependent subroutines which are accessible by conventional and
easily understood methods.

LINOTRON DESCRIPTION

The decision to employ Linotron composition, and the question of its effective utilization depend upon
knowledge of Linotron features and capabilities. The purpose of this section is to provide that information
briefly; avoiding, where possible, technical vocabulary.

The maximum area on a page (the frame) which can be composed by Linotron is 8 X 10% inches. A
page may be composed with an 8 inch width or, by changing orientation, with a 10% inch width.

In the composition process, each character is reproduced from images located on grids. Each grid con-
tains 255 characters, and four grids may be in use at one time. A total of 1020 characters are thus available.
Numerous type styles are available, and hence grids are varied by the user according to utility and taste, not
necestity.

In printing, sizes are most conveniently given in printers measure, the fundamental unit being the point.
With the Linotron, using any grid, the available type sizesare 5,6, 7,8, 10, 12, 14 and 18 point.

Other opticens add to this flexibility. Upon command, the Linotron may produce a pseudo-condensed
type. The paossibilities are 100%, 83% and 63% of normal width. In addition to existing bald and italic type-
faces, any character may be darkened or tilted to produce synthetic bold, synthetic italic, or both. Under-
scoring or horizontal and vertical rule drawing may be accomplished in .003, .005, and .015 inch widths.

All of the listed features are available at all times during actual composition. Further, the location, on
the page, of printed characters and rules is randomly selected through a system of frame coordinates. Thus,
the compasition sequence will take place according to user logic and convznience.

Obviously every feature and operational mode has a corresponding sequence of commands which must
be specified on the input tape. The methods of character, grid, and special effect selection are discussed in
connection with FATS routines which construct and transmit the command character sequences. The follow-
ing section presents the operation of Linotron in logical terms and detail; it is prere-uisite to the successful
use of FATS.

LINOTRON OPERATIONS

As described in the Introduction, the Linotron machine can be thought of as a special-purpose compu-
ter. Input consists of a 7-track magnetic tape containing all the coded commands and text necessary to com-
nose the desired pages. The Linotron input tape is described more fully in the following section. Output from
the Linotron consists of the “printed’ pages, which actually are photographic reproductions of a high-resolution
i cathode ray tube screen, upon which the text has been displayed, character by character. These output pages
can be returned to the user as either transparent negatives or opaque positives (prints) of normal page size, up
to 8 by 10% inches. On the positives, characters appear uniformly black on a white background. Broken, im-
I perfect, or misaligned characters rarely appear on Linotron output. Either the positives or negatives can be
? used for reproduction of the pages, depending on the reproduction process and the requirements of the publi-
cation. In the following paragraphs, the term “printing” will refer to the process performed by the Linotron
machine in obtaining character images, displaying them on the CRT screen, and recording them photograph-
ically on the output medium.

The shape of each character printed by the Linotron is determined by a “character image’’; the partic-
ular character image used depends only on the style of type being set and the particular character to be printed.
Thus, all lower-case a's printed in “Spartan Book'' type are produced by the same character image. The size
of the printed character and its location and orientation on the page are determined electronically.

4 Character images are physically located on arrays called ““grids”’. Each grid contains all the necessary
j images for three complete styles of type, located in three “zones’ on the grid. Each zone is in turn divided

5

into two sections, one containing “‘unshift” character images (such as those for lower-case letters and numeric
digits), the other containing “shift"” character images (such as those for capital letters). The above describes
the /ogical arrangement of a grid; the physical arrangement of the character images is different, but unimpor-
tant. An entire grid can contain up to 255 images. There are a number of character grids available for the
Linotron machine. A list of these grids and the type styles contained on each is found on page 7 .

Any Linotron job can access character images from up to four grids. There are four turrets, numbered
1 thru 4, on the Linotron machine which hold the grids needed for a particular job. Any grid may be mounted
on any of the four turrets, and any turret may be left empty. Written instructions must be provided with each
Linatron input tape indicating to the Linotron machine operators the name of each grid to be used, and the
turret number on which it is to be mounted.

Before a fine of characters can be printed, the Linotron requires a minimum of five specifications, which
it obtains from codes on the input tape. First, the number of the turret containing the appropriate grid must be
indicated. Second, the number of the zone where the proper type style is located must be specified. Third,
the shift mode must be given, designating whether “‘unshift” or ““shift’ characters are to be printed. Fourth,
the type size must be specified. Characters can be printed in 5, 6,7,8,10, 12, 14, or 18 point type sizes. (One
“point" equals about 1/72 inch, but the type size includes some white space above and below most characters.
A convenient rule of thumb is that the height of capital letters in hundredths of an inch equals the type size in
points, e.g. capital letters set in 12 point type size are 0.12 inches tail). The last specification required is the
page location where the line of print is to begin. Page coordinates will be described more fully in a subsequent
paragraph. Once any of the first four specifications are designated, the designation remains in effect untii
specifically changed by instruction codes further along on the input tape.

Using these parameters, the Linotron machine can electromechanically prepare itself for printing. The
characters actually printed depend of course on the character images selected from the designated grid, zone,
etc. The selection is governed by what may be called “grid location characters” (or “Linotron characters”) which
are also contained on the input tape. To aid in visualizing this process, a schematic diagram of the logical arrange-
ment of a single grid is given below:*

ZONE 1 ZONE 2 ZONE 3
UNSHIFT SHIFT UNSHIFT SHIFT UNSHIFT SHIFT
&
-
9]
< %
‘4
< e ~—
I
i CHARACTER IMAGES |
(o]
S
(E
v
518
=]
L5

*Similar diagrams for each of the actual Linotron character grids are located in Appendix D.

6

FATS Number

Linotron Character Grids

Grid Namev

Century Expanded

Naval Observatory

Superiors / Inferiors /
Math & Greek

Spartan Heavy / Trade Gothic

Special Times Raman

NRL Grid

Crystal Data

Helvetica

Census Gothic

Type Styles

Zone 1:
Zone 2:
Zone 3:

Zone 1:
Zone 2:
Zone 3:

Zane 1:
Zone 2:
Zone 3:

Zone 1:
Zone 2:
Zone 3:

Zone 1:
Zone 2:
Zone 3:

Zone 1:
Zone 2:

Zone 3:

Zone 1:
Zone 2:
Zone 3:

Zone 1:
Zone 2:
Zone 3:

Zone 1:
Zone 2:
Zone 3:

Roman
Roman Bold
Italic

Bell Gothic
Spartan Book
astronomical symbols

superior figures
inferior figures

Greek ietters and
mathematical symbols

Spartan Heavy
Trade Gothic
Trade Gothic Bold

Times Roman
Times Roman Bold
Spartan Heavy

Mathematical symbols
Times Roman ltalic
with Greek

Times Roman with
Greek

Bodoni Book Roman
Bodoni Bold Roman
inferior figures and Greek

Helvetica Roman
Helvetica Bold
Helvetica Italic Bold

Spartan Book Condensed
Spartan Heavy Condensed
Spartan Heavy

If the turret containing this grid had been selected, the zone and shift mode specifications would delimit
a single column of character images on the grid. A grid location character will then determine which character
image in the column is to be used for printing. After printing, the page location coordinates are advanced by
the width of the character just printed and the process is then repeated for the next grid location character on
the input tape. At any time the Linotron may encounter codes on the tape for changing shift mode, zone,
turret, typesize, or page location. Once the indicated operations are performed the Linotron is ready to resume
printing, using the grid location character(s) it next encounters.

The Linotron may also encounter codes on the tape that instruct it to electronically thicken, tilt, or
squeeze subsequent characters as they are printed, producing nseudo-bold, pseudo-italic, or condensed-width
type. Squeezing characters to produce condensed-width type is called changing their aspect ratio, which is
the ratio of the printed width divided by the normal width, expressed as a percentage. Normal type therefore
has an aspect ratio of 100%, but 83% and 63% widths are also available. Tilting or thickening characters
(which does not alter their height or width) is called selecting a special face. Any of these electronic altera-
tions can be applied to any type style in use in any combination, and can be switched “on” or “off” at any
time by codes on the input tape.

The Linotron is capable of drawing horizontal or vertical rules in three thicknesses. Instruction codes
on the tape determine the thickness, starting page location, direction, and length of each rule to be drawn.

The Linotron locates points on a page (frame) by means of a left-handed cartesian coordinate system
with a positive X axis and a positive Y axis (there are no negative coordinate values). Coordinates are meas-
ured in Linotron units; there are 1300 Linotron units per inch, or 18 Linotron units per point. One Linotron
unit is the smallest resolvahle distance of the Linotron system so that fractions of a Linotron unit are never
given. A line of print is always set parallel to the X axis, i.e. the Y coordinate value is fixed while the X
coordinate value increases as the printing progresses. There are two possible arientations of the coordinate
system relative to what can be considered a fixed page. In the “normal” mode, the origin (Y=0, X=0) is at
the upper left corner of the page, the X axis extends to the right 8 inches, the Y axis extends downward 107%
inches, and printing progresses horizontally to the right. In the “turn-page” mode, the origin is at the lower left
corner of the page, the X axis extends upward 10% inches, the Y axis extends to the right 8 inches, and printing
progresses vertically upward, as shown below.

Origin 8" X

—p X

Normal Printing.

‘lol ‘e
2 10%

Furn-page printing.

Origin 8"

<

The orientation used is determined by codes on the Linotron input tape. For a page set wholly in either mode,
the only difference to the user is the different lengths of the Y and X axes. The normal orientation thus permits
a “tall” page to be set and the turn-page orientation permits a “wide’ page to be set. Otherwise the modes are
entirely equivalent. 1t is possible to change orientations while setting a single page, but in such a case it is impor-
tant to note that a fixed point on the page has different coordinates in the two modes. The transformation
between coordinates is given below:

Turn-page coardinates, given normal coordinates:
YT = XN ~ 165

Normal coordinates, given turn-page coordinates:
Yy = 13950 — X1
XN = YT 2 165

In order to avoid coordinate transformations which yield negative-valued coordinates, avoid locations within

% inch of the page boundaries. The convention has been adopted that to specify a page location (either mode)
the Y coordinate is given first, followed by an X coordinate. The Linotron obtains page coordinates from input
tape codes. Other codes are available to increment either coordinate in a positive direction. The Linotron auto-
matically increments the X coordinate after printing each character, so that page coordinates need only be
specified for the beginning of a line of characters, not for each character individually. Since the Linotron can
locate any page coordinates at random, there is no advantage or requirement in setting a page from top to
bottom.

in order that the Linotron can properly advance the X coordinate after printing a characier, the width
of the character image, measured in “relative units”, is coded onto the grid underneath the image itself. To
obtain the width of the printed character in Linotron units, the width in “relative units” is multiplied by the
type size in points. Thus, a character image 9 relative units wide (a typical value) will produce a printed
character 108 Linotron units (0.0831 inches) wide if printed using a 12 point type size. Grid diagrams, showing
each character image and its width in relative units, are located in Appendix D. The Y coordinate and X coor-
dinate values of a printed character refer to the lower left corner of the character. (The lower edge of the char-
acter is defined to be the “z-line” which is even with the lowermost extension of characters such as g or p.)

After a page (frame) has been completed, codes on the input tape instruct the Linotron to advance the
photographic film. If the last page for the job has been printed, a stop code which halts the Linotron should
follow the film advance code. if no stop code is present, the Linotron will expect data for a new page to begin
at the next block on the input tape. All blocks which start a page must begin with a 6-character job number
and a 4-character frame number. The job number is an identification number assigned to Linotron user pro-
jects by GPO, and the frame . 1mber is simply a page count. When preparing a Linotron tape for GPO, the
job number and beginning ar. ending frame numbers should be marked on the tape reel, along with the total
number of blocks on the tape.

THE LINOTRCN TAPE

The Linotron tape is a 7-track, 556 CPI, odd parity, unlabeled BCD tape with 2048-character hlocks.
Each block is packed with contiguous BCD characters without any format or field separators of any kind. The
Linotron obtains all its commands from this tape. Generally, each page to be printed will require between 5
and 15 blocks on the Linotron tape.

T

It is the job of the FATS subroutines to generate the proper command characters and to write them on
the tape. For most users, therefore, the Linotron tape can be considered a “’black box"’; no detailed knowledge
of the command codes used on the tape is necessary for the efficient use of the FATS subroutines.

in the remainder of this Circular, the characters generated and written onto the Linotron tape by the
FATS subroutines will be referred to as tape codes. FATS subroutines generate these tape codes in EBCDIC
form, and EBCDIC to BCD translation is performed by the 360 Operating System as the tape is actually writ-
ten.

THE FATS SYSTEM

The Fortran Automatic Typesetting System (FATS) has been designed for users who have little knowledge
of printers’ terminology, procedures, ar measures, and who wish to print mostly tabular data. FATS subroutines
could be adapted to print large amounts of textual material, but the MTP is much more suitable for this type of
work, especially if text is to be justified at both margins.

From a user's viewpoint, FATS is simply a group of subroutines which generate th: necessary codes for
the Linotron and write them onto tape. In the next section of this Circular, each subroutine call, its purpaose,
the arguments required, and a complete discussion of its use and results is given. These subroutines are to be
called from a user-written Fortran (or PL1 or Assembler Language) main program.

However, the FATS subroutines described in the next section form only part of the FATS system. Also
part of FATS, although not accessable by the user, is a group of utility subroutines and common blocks. Some
of the utility subroutines were originally coded in Assembler Language, and these perfarm vital functions, such
as binary-to-decimal conversion, which cannot be efficiently performed in Fortran. The common blocks permit
intercommunication and data sharing between FATS subroutines and also provide storage for some of the large
arrays required by FATS. The user should not attempt to enter or interfere with any of the utility subroutines
or common blocks. (The names of all FATS utility subroutines and comman blocks begin with a $, e.g. SREAD,
SOUTPT, SSAVE, etc.)

The FATS system was originally generated at the U. S. Naval Observatory's G. W. Hill Computing Center,
using an 1BM System/360 Model 40 with OS release 18.6 and Fortran G and Assembler F softwear. There
should be no compatability problems with larger System/360 or 370 models or later S releases, but recom-
pilation and reassembly of FATS source modules might be advisable. Approximately 128 K bytes is the mini-
mum core size requirement.

Two data sets, one input and one output, must be made available to the FATS subroutines at execution
time. The input data set, DDNAME = GRIDFILE, contains data for each of the character grids, and is read only
once. The output data set, DDNAME = LINOTAPE is the Linotron tape, and is written more or less contin-
uously. The FATS subroutines campletely control 1/0 operations on these data sets - the user's only respon-
sibility is to supply standard DD statements for them at the execution step of his program. The DD statements
should contain only UNIT, VOLUME, DSNAME, DISP, and LABEL parameters, as appropriate; no DCB infor-
mation should be specified. GRIDFILE can be either a tape or disk data set, but LINOTAPE must be a 7-track
tape data set.

The structure of the FATS system as it would reside in core during a user program execution is represented
schematically in the diagram below. The arrows indicate the possible flow of data. As indicated, the user's pro-
gram communicates only with the central part of the FATS system via the subroutine calls. The system as dia-
grammed requires 78 K bytes of core. Additional storage must be reserved for the resident System, 1/0 butfers,
and the user's program and any subroutines it requires.

I FATS Common Blocks 98 K]

1 ¢ 1 ¢ ! 3
FAT >y
Rk System |/O Routines
Utility le—
/ Subroutines ? i
User-Callable 46 K ’
User’s Subroutine FATS ‘
Program 1 Calls Subroutines !
FATS
34.7K
Save Areas
e—
\ 1
2 3 1 3

Fortran Library Subroutines
Required by FATS

16.7 K

When the user issues a call to a FATS subroutine, he has in mind a specific function he wishes the Linotron
machine to perform. Of course there is no direct link between the user’s program and the Linotron: the user’s
program calls the appropriate FATS routine, the routine generates the proper tape codes, the tape codes are
written onto the Linotron tape, and eventually the tape will be run on the Linotron at GPO. Only then will the
function originally desired by the user actually be performed by the Linotron. Since there is no direct connec-
tion between the user’s program and the Linotron machine, the FATS system in certain respects acts as a surro-
gate for the Linotron at program execution time. For instance, each time the user's program calls subroutine
entry GRID, which generates the tape codes for a turret (grid) change, a common block parameter which keeps
track of the “current turret” is changed accordingly. This parameter change within FATS is the analog of the
turret change on the Linotron. There are a total of 8 such parameters within FATS, which simulate certain
electro-mechanical modes of the Linotron machine. The Linotron machine modes thus simulated are : turret,
grid,” and zone selection, shift mode, type size, coordinate system orientation, aspect ratio, and special face
selection. This set of modes determines the appearance and orientation of the characters being printed by the
Linotron at any time. As tape codes are produced by the FATS subroutines, the values of the 8 FATS param-
eters will identically represent the corresponding Linotron machine modes when the same tape codes are pro-
cessed by the Linotron machine. This set of 8 parameters, or their equivalent Linotron machine modes, will
be termed the “’Linotron configuration”. A small group of FATS subroutines is used for establishing or
changing the Linotron configuration. Most FATS subroutines, however, either leave the configuration
completely unaltered, or make temporary alterations in one or two elements of the contiguration but reset
them before the return to the user’s program. How each FATS subroutine affects, or is affected by, the
Linotron configuration is described in the individual subroutine descriptions of this Circular.

The first two elements of the Linotron configuration, turret and grid selection, require special attention
by the user. As previously described, specific grids are mounted on specific turrets by the Linotron machine
operators before a job is run, according to written instructions accompanying the Linotron tape. The FATS
system must also be informed as to which grids will be assigned to which turrets, and this is accomplished by

*Note that within a single job, grid selection is determined by turret selection.
(1

a call to subroutine TURT near the logical beginning of the user’s program. TURT establishes a turret-grid cor-
respondance in a common block available to all FATS subroutines, and also_reads in appropriate information
from the grid data file (OONAME = GRIDFILE). Thereafter, to select a specific grid, the user calls the appro-
priate FATS subroutine entry (either TYPE or GRID) providing as an argument the turret number of the grid
he wishes to use. The subroutine will then generate the tape codes necessary to affect the turret change and
will update both the turret and grid parameters in the Linotron configuration. The Linotron machine’s turret
changes are mechanical and slow (requiring about % second of time) in addition to being not entirely reliable.
Therefore, the user should minimize the number of such changes as much as possible.

The FATS system allows the user to establish his own page measurement units, so that he can specify
locations and lengths on the printed page in inches, millimeters, picas, or whatever system he chooses. FATS
subroutine DIMN should be called near the logical beginning of the user’s program to establish the system of
measurement to be used. Thereafter, any page coordinates, lengths, field widths, etc., required as arguments
for any FATS subroutine are specified in the user’s units. All valid page coordinates must be positive and are
measured relative to the current origin of coordinates (see section on page coordinates in Linotron Operations).
If DIMN is never called, page coordinates, etc. must be given in Linotron Units (1 inch = 1300 Linotron Units).

Except for four job initialization calls (to TURT, DIMN, MARG, and STAB) all FATS subroutine calls
must occur between the call to subroutine STRT, which opens the Linotron tape and establishes an initial
configuration, and the call to subroutine TERM, which empties the tape output buffers and closes the Linotron
tape.

Most FATS subroutines which require page coordinates as arguments allow the use of the ““negative
coordinate option.” A subroutine with this option available will accept either positive or negative coordinate
values. Positive-valued coordinates are treated in the usual way, i.e. they are assumed to be valid page coordi-
nates, and the tape codes generated which will change the Linotron’s page location before any operations
are performed. Negative-valued coordinates, on the other hand, are, of course, not valid as page coordinates,
and they prevent the subroutine from generating the tape codes to change page location; any operations will
therefore be performed at the Linotron's current page location, wherever it happens to be. The magnitude of
such negative coordinates is irrelevant - their negativity is simply a “code’ that prevents a page location change.
The negative coordinate option, where available, applies to the Y coordinates and X caordinates independently,
so that one coordinate can be left unchanged while the other is varied. It should be mentioned that the current
page location would normally be at a point immediately following the last character printed, unless new page
coordinates had been specifically established since then.

The FATS system generates no diagnostics, since a diagnostic facility would have required extensive
testing of argument values at the beginning of each FATS subroutine - a time-consuming process. The user is
urged to familiarize himself with the proper use of each FATS subroutine and any applicable restrictions on its
argument values. [Program testing and debugging is described in Appendix C.]

In the next section of this Circular, the FATS subroutines are individually described. There are 41
possible calls, but undoubtedly the user will reruire only a subset of these for each job, depending on the
page layout, the form of the input data, and convenience. Many subroutines have functions which overlap
those of other subroutines, and the user is thus rresented with a choice of possible calls, or sequences of calls,
to accomplish a single function. It is hoped that this redundancy allows FATS to meet the needs of a wide
range of users and applications.

12

S

SECTION i

SUBROUTINE DESCRIPTIONS

Subroutine TURT
Entry: CALL TURT (IG1,1G2,1G3, 1G4)
Purpaose: This subroutine, called ance near the beginning of a job, informs FATS of which grids

will go on which turrets.

Arguments: IG1 (INTEGER*4) The FATS code number (see below) for the grid on turret No. 1.
IG2 (INTEGER*4) The code number for the grid on turret No. 2.
IG3 (INTEGER*4) The code number for the grid on turret No. 3.
1G4 (INTEGER*4) The code number for the grid on turret No. 4.

Code Numbers:

1 = Century Expanded Grid

2 = Naval Observatory Grid

3 = Superiors / Inferiors / Math & Greek Grid
4 = Spartan Heavy / Trade Gothic Grid
5 = Special Times Roman Grid

6 =NRL Grid

7 = Crystal Data Grid

8 = Helvetica Grid

9 = Census Gothic Grid

10, 11,12, ... = (Future Use)

0= No Grid mounted

Discussion: This subroutine must be called once per job, near the beginning of the program, before
STRT is called (see subroutine STRT). TURT provides information to the FATS system as to which grids
will be mounted on which turrets when the Linotron tape is actually run on the Linotron machine. TURT
also reads data for these grids from the grid data file. This is the only time that the grid data file is used;
TURT clases this data set befare the return to the user’s program. In the event that IG1, 1G2,1G3, or !G4
designates a grid whose data is not available on the grid data file, the following message will be typed on
the console typewriter: END OF FILE ENCOUNTERED WHILE SEARCHING FOR GRID nn DATA
where nn is the grid number designated. In this case execution will continue, but with unpredictable
results.

Note that thic subroutine provides information only to FATS at program execution time;
it cannot guarantee that the proper grids will be physically mounted on the proper turrets when the Linotron
tape produced by the program is run on the Linotron machine. Instructions to the Linotron machine
operators, indicating which grids to mount on which turrets, should be specified in writing with each Linotron
tape delivered to GPO.

To help minimize turret changes, have the grid that will be used first mounted on the
lowest numbered turret, if possible.

Example of Use: See Appendix A, Sample Program, Statement 0006.

14

Subroutine DIMN

Entry: CALL DIMN (ZINCHS, ZUNITS)

Purpose: This subroutine allows the user to establish his own units in which page coordinates
are specified.

Arguments: ZINCHS (REAL*4) Any arbitrary length, specified in inches.
ZUNITS (REAL*4) The same arbitrary length, specified in the user’s own units.

Discussion: This subroutine may be called once per job, near the beginning of the program, before
STRT is called (see subroutine STRT). DIMN establishes “‘user units’ in which all page coordinates and
lengths are to specified. Once DIMN is called, all Y or X page coordinates, delta-Y or delta-X lengths,
and field widths which are arguments to any FATS subroutine must be expressed in the “user units’.

For example, suppose a user wished to express all his page coordinates, etc. in milli-
meters. An appropriate call would be CALL DIMN (1.0, 25.4). Thereafter, all coordinates or lengths
given to any FATS subroutine would have to be in the “user units”, i.e. millimeters. For example, an
X coordinate value of, say, 176.5 wouid be understood by any FATS subroutine as meaning 176.5
millimeters = 6.949 inches = 9033 Linotron units to the right of the origin.

In the above example, the same results would have been obtained if the original call
had been CALL DIMN (10., 254.) or CALL DIMN (0.03937, 1.0).

If a user wished to use Linotron units as his ““user units”, he coutd use CALL DIMN

(1.0, 1300.0), since there are 1300 Linotron units per inch. However, in this case the call is unnecessary,

since if DIMN is never called, FATS assumes that user units are Linotron units throughout the job.

Example of Use: See Appendix A, Sample Program, Statement 0007.

15

Subroutine STRT

Entries: CALL STRT (JOBNO, IFRAME)
CALL PAGE
CALL IDEN (Y, X, ITURET)

Purpose: This subroutine takes care of certain bookkeeping functions necessary to properly
initialize and identify each page.

Arguments: JOBNO (INTEGER*4) The job number for the current job (6 decimal digits).
IFRAME (INTEGER*4) The frame number for the first frame (page) to be printed.

Y, X (both REAL*4) The page coordinates, in user units, of the lower left corner
of the field in which the job and frame numbers are to be printed. Negative
coordinate option valid.

ITURET (INTEGER*4) The turret number of the grid to be used for printing the
job and frame numbers.

Discussion: Each page to be printed must be properly initialized before any subroutines which
operate on the page are called. Entries STRT and PAGE perform this page initialization procedure. To
initialize the first page to be printed, use entry STRT, providing via the arguments the job number and
frame number for the first page. To start the second and all succeeding pages, use entry PAGE.

Entry STRT opens the Linotron tape and types a message on the console typewriter
to that effect (a separate message from the 360 System mount message). It also initially sets the Linotron
configuration to: page orientation = normal; turret = lowest-numbered turret with grid assigned (normally
turret no. 1); zone = 1; shift mode = unshift; typesize = 5 point; aspect ratio = 100%; special type foce
selection = normal. An internal frame counter within the subroutine is set to the value of the second
argument (IFRAME).

Entry PAGE generates tape characters to advance the Linotron film, empties FATS
tape output buffers, and initializes a new page. The Linotron configuration is unaltered, except for the
page orientation, which is set to normal. The internal frame counter is incremented by 1.

In order to facilitate identification of printed output at GPQ , each page should have
the job and frame numbers printed somewhere on it, usually in a lower corner. Entry IDEN can be used
for this purpose. The job and frame numbers will be printed using 10-point type on zone 2 of the grid
on turret ITURET. They will be located in a field approximately 0.1" high and 1.0" wide, with the
lower left corner at page coordinates (Y, X). The current value of the internal frame counter is used
for the frame number. Turret, zone, shift mode, and typesize may be changed temporarily by this
routine but the original configuration will be reset before a return to the user’s program.

Do not use entry PAGE to terminate a | inotron job (see subroutine TERM).

Examples of Use: See Appendix A, Sample Program, Statements 0010, 0072, 0073, 0105. .

16

Entries:

Purpose:

Arguments:

Discussion:

Subroutine TERM

CALL TERM
CALL PASS

This subroutine terminates Linotron processing for a job.
(None)

Either TERM or PASS should be called once per job, at the logical end of Linotron

processing. If the Linotron tape volume in use is to be subsequently used by other jobs for producing
additional frames, use entry PASS. If nothing further is to be written on the tape before being sent to
GPO, use entry TERM; TERM places “‘stop code’ tape characters on the tape which will physically halt
the Linotron machine.

Both entries empty FATS tape output buffers and close the Linotron tape. A message

is typed on the console typewriter indicating that the tape has been closed and giving the number of
tape blorks written by the current job.

No other FATS subroutines should be called after TERM or PASS has been called.

Example of Use: See Appendix A, Sample Program, Statement 0106.

W/

Subroutine TURN

Entry: CALLTURN (ITURN)

Purpose: This subroutine constructs the sequence of tape codes necessary to orient the coordinate
system and printing on a page. Two orientations are possible.

Argument: ITURN (INTEGER*4) The orientation parameter:
ITURN = 1. Coordinate system and printing to be “normal’; this gives an
X axis length of 8 inches and a Y axis length of 107 inches.

ITURN = 2. Coordinate system and printing to be ““turn-page”’; this gives
an X axis length of 10% inches and a Y axis length of 8 inches.

Discussion: See pp. 8-9 in“Linotron Operations’ for a complete discussion of page coordinates,
coordinate axes, and the “normal” and “turn-page”” orientations of the coordinate system. Briefly, since
lines of print always run parallel to the X axis, the normal orientation permits a tall page to be composed,
while the turn-page orientation permits a wide page to be composed. If the page to be composed does
not exceed 8 inches in either height or width, either orientation can be used.

In certain cases it may be necessary to compose a page using both orientations, but in
such situations all characters to be printed under one arientation should be composed before the orienta-
tion is changed. Before attempting such composition, the user should thoroughly understand the discussion
contained in the “Linotron Operations” section.

Calls to STRT and PAGE set the orientation to normal, so that if all pages are to be set
whally in the normal orientation, TURN need never be called. Once turn is called, the coordinate system
orientation specified by the call remains in effect until another call to TURN or a call to PAGE.

Examples of Use: See Appendix A, Sample Program, Statements 0098, 0100.

18

Subroutine TYPE
Entries: CALLTYPE (ITURT, |ZONE, ISHIFT, ISIZE)
CALL GRID (ITURT)
CALL ZONE (IZONE)
CALL SHFT (ISHIFT)
CALL SIZE (ISIZE)
Purpose: This subroutine enables a user to establish or alter typefaces and sizes.
Arguments: ITURT (INTEGER*4) The turret number (1,2, 3, 4) containing the grid with

the desired typeface.

IZONE (INTEGER*4) The zone number (1, 2, 3) on the grid containing the
selected typeface.

ISHIFT (INTEGER*4) The shift mode which is to be effective.

1 = unshift
2 = shift
ISIZE (INTEGER*4) The typesize (5,6, 7,8, 10, 12, 14, 18) in points, to be
used.
Discussion: A call to the TYPE routine selects the grid, zone, shift mode, and typesize during ini-

tialization of composition. |t should always be used before any type is actually composed; if it is not,
FATS will assign parameters by default (see subroutine STRT). A call to GRID, ZONE, SHFT, or SIZE
may be made in order to effect a selective change in one of the specifications. |f more than one para-
meter is to be changed at a given point, TYPE may be used with appropriate parameter values, and zeros
supplied for unaffected parameters. Zero should not be supplied as an argument to the single parameter
entries, since it produces a no-operation condition. An invalid typesize will yield unpredictable results.

The reader is directed to the description of subroutine COMPOZ for the purpose of
making temporary or isolated configuration changes for the sake of initial capitals in text; or the inser-
tion of an unusual symbol.

Some thought, during job planning, should be given to grid changes. Each grid change
involves a 2 second delay in composition on the Linotron machine. Greater efficiency will be obtained
if all matter requiring a particular grid is composed while that grid is in the immediate access state.

Examples of Use: See Appendix A, Sample Program, Statements 0020, 0023, 0025, 0029, 0033,
0044, 0068, 0074, 0076, 0079, 0080, 0037, 0101.

19

Subroutine OODD

Entries: CALL SQEZ (NSQZ)
CALL SPEC (NSPC)

Purpose: These routines synthetically alter typefaces by changing the “aspect ratio” or select-
ing a “‘special face”.

Arguments: NSQZ (INTEGER*4) To indicate the amount by which printed characters are
to be condensed (aspect ratio):

NSQZ = 1 gives normal width
2 gives 83% normal width.
3 gives 63% normal width.

NSPC (INTEGER*4) Selects scanning and tilting options (special face):
NSPC = 1 gives normal type.
2 creates pseudo-italic.
3 creates pseudo-bold.
4 creates pseudo-italic and bold.

Discussion: This routine would be entered prior to one or more printing routines. The selected
options remain in effect until changed by another use of the routine. Entry SQEZ with arguments

2 or 3 causes characters to be condensed together with the between-character white snace. Nate that
if subroutines FNUM, INUM, ANUM, or COMPOZ are subsequently called, field widths and specified
between-word blank spaces are not affected. Condensing of a field must be performed by the user.
Between-word spaces to be handled by the COMPQOZ subroutine are governed by its space-width
parameter which takes precedence over the condensed type option. Shrinking the blank separatars
must e parformed by changing the SPACE parameter in the PRNT calling sequence.

SPEC produces pseudo-bold characters by modifying the electronic image scanning,
so that the characters are made darker, Pseudo-italic is accomplished by tilting the characters elec-
tronically.

Examples of Use: See Appendix A, Sample Program, Statements 0035, 0037, 0069, 0071, 0102,
0104.

20

Subroutine COMPOZ

Entries: CALL PRNT (Y, X,NN,NTEXT, SPACE)
CALL SCAR (Y, X,ITURET, IZONE, ISHIFT, LGLC)
CALL MLTP (Y, X, NN, NTEXT, SPACE, YINC, XINC, NTIMES)
CALL MLTC (Y, X,ITURET, IZONE, ISHIFT, LGLC, YINC, XINC, NTIMES)

Purpose: This subroutine generates the tape codes necessary to print a line of alphameric text,
including punctuation and special characters.

Arguments: X (both REAL*4) Page coordinates, in user units, for the lower left cornes
of the left-most printed character. Negative coordinate option valid except
for calls to MLTP or MLTC, in which cases coordinates must be explicitly
given.

NN (INTEGER*4) The number of EBCDIC characters in NTEXT (including
“editing characters”” and blanks) to be processed.

NTEXT (Array of Ad4-formatted wards) An array of contiguous EBCDIC charac-
ters representing the text to be printed. (The corresponding Hollerith fit-
eral can be substituted for an array name).

SPACE (REAL*4) The width of the space to be inserted between printed words
in user units.

ITURET (INTEGER*4) The turret number for a grid containing a special charac-
ter or symbol.

IZONE (INTEGER*4) The zone number where a special character or symbol is

located.
ISHIFT (INTEGER*4) The shift mode for a special character or symbol.
LGLC (An Al-formatted word) A word with a single character in its high-order

(left) byte. The character is the EBCDIC translation of the grid location
character (Linotron character) for a special character or symbol. (4 Hol-
lerith literal of one character can be substituted for a variable name).

YINC (REAL*4) Y coordinate increment, in user units, for multiple-print ent-
ries.

XINC (REAL*4) X coordinate increment, in user units, for multiple-print ent-
ries.

NTIMES (INTEGER”4) For multiple-print entries, the total number of times a char-
acter or line of characters is to appear on the printed page.

Discussion: Entry PRNT is used to print a single line of alphameric text, represented by the EBCDIC
characters in array NTEXT, beginning at nage coordinates (Y, X). The line is printed using the Linotron
configuration (turret, grid, zone, typesize, aspect ratio, etc.) in effect at the time of the call. Any changes
made to the configuration by this routine are reset before the return to the user’s program, so the config-
uration is unaffected by the call. PRNT should be used only with “standard’’ zones, i.e. not with special-
character zones such as zone 3 of grids 2 or 3. Entry MLTP is similar to PRNT but is used to create milti

ple printings of the same line; the first such printing will begin at (Y, X), the second at (Y + YINC, X+XINC),
etc., until the line is printed (NTIMES) times.

Z1

NTEXT can have any number of contiguous EBCDIC characters of any of the following
types: alphabetic characters A thru Z (hex C1 thru E9), decimal digits 0 thru 9 (hex FO thru F9), blanks
(hex 40), “editing characters” (hex 4F), or any of the punctuation characters listed on the chart on the
foliowing page.

Alphabetic characters in NTEXT cause the corresponding letters to be printed, in caps
if the shift mode in effect is shift, or lower case if the shift mode in effect is unshift.

Decimal digits in NTEXT cause the corresponding numerals to be printed, only if the
shift mode in effect is unshift.

Punctuation characters will cause the corresponding characters to be printed, regardiess
of the shift mode. However, the punctuation character must be one of the ones processed by PRNT (see
chart on the fellowing page), and the corresponding punctuation mark must be available on the grid and
zone in use.

For each blank in NTEXT, PRNT will insert a space of width SPACE (user units) into
the printed line. These blanks can therefore be used for inter-ward spacing. Two successive blanks will
result in a space of width 2x SPACE to appear in the line, three will result in a space of width 3x SPACE,
and so on.

The “editing character” - the logical OR symbol | (12-7-8 punch, hex 4F) - has a
specia! purpose. It informs PRNT that the single character following it (i.e. immediately to its right) in
NTEXT is to be processed under the opposite shift mode than that currently in effect for-the line as a
whole. This is useful when there are a few capital letters (shift) to be printed in a line of predominently
lower-case letters (unshift). The line should be printed in the unshift mode with the | character preceding
each alphabetic character in NTEXT whose corresponding letter is to appear capitalized. it is also useful
when a few numerals (unshift) are to appear in a line of capital letters (shift). The line should be printed
in the shift mode with the | character preceding each decimal digit in NTEXT. The editing character
should not precede a blank or punctuation character.

Since generally NTEXT “looks like" the line to be printed, use of PRNT or MLTP should
be fairly straightforward.

Occasionally an odd character or symbol must be printed, such as a Greek letter or
mathematical symbol. Entry STAR is used to print such a single special character, at page coordinates
(Y, X). The turret, zone, shift mo¢'e, and grid location character which the user specifies as arguments
to SCAR completely determine a «..1aracter image on a grid to be used for printing. The Linotron config-
uration is changed to obtain and print the character, but is reset before the return to the user's program.
Note that this can result in two rapid turret changes, which is not recommended. Efficient use of this
routine would bo obtained only if the special character or symbol is located on the grid in use at the time
of the call, so that no turret change would be required. Entry MLTC is similar to SCAR but is used to create
multiple printings of the same character; the first such printing will be at (Y, X), the second at (Y+YINC,
X+XINC), etc., until the character is printed NTIMES times.

Note that the negative coordinate option can be used for the single-print entries (PRNT
and SCAR), but not for the multiple-print entries (MLTP and MLTC). The latter entries require that
valid page coordinates for the first printing be explicitly specified.

Examples of Use: See Appendix A, Sample Program, Statements 0021, 0022, 0024, 0027, 0036, 0045,
0066, 0070, 0077, 0081, 0082, 0089, 0095, 0099, 0103.

22

Punctuation Characters Processed by PRNT

EBCDIC
character

*

e BT

-~

e

Characters must be available on grid and zone in use

Card
code

(12-3-8)
(0-3-8)
(11-6-8)
(2-8)
(12-5-8)
{(11-5-8)
(5-8)
(0-5-8)
(12-6-8)
(11)
(11-4-8)
(0-1)
(11-3-8)
(12)
(0-7-8)
(6-8)
(11-2-8)
(0-4-8)

Character
printed

R

g @ >~

I

%

period
comma
semi-colon
colon

open pearen.
close paren.
apostrophe
hyphen
plus

minus or dash
asterisk

slash

.dollars

ampersand
interrogation
equals
exclamation

per cent

i e

Subroutine FNUM

Entries: CALL FNUM (Y, X, FLDSIZ, FPN, NODEC, ISIGN, MINDIG)
CALL DNUM (Y, X, FLDSIZ, DFPN, NODEC, ISIGN, MINDIG)

Purpose: This subroutine accepts a single- or double-precision floating point number and
constructs the necessary tape codes to printit. The printed number will appear
right-justified in a field on the page as specified by the user.

Arguments: Y, X (hoth REAL*4) The page coordinates, in user units, of the lower
left corner of the field in which the number is to be printed. Neg-
ative coordinate option valid.

FLDSIZ (REAL*4) The width (i.e. the size in the X direction) of the field
in which the number is to be printed, in user units.

FPN (REAL*4) A single-precision floating-point number to be printed.
DFPN (REAL*8) A double-precision floating-point number to be printed.

NODEC (INTEGER*4) The number of digits to appear to the right of the
decimal point in the printed number.

ISIGN (INTEGER*4) Sign option:
ISIGN = 0 Sign of number not to be printed.
iSIGN = 1 Sign of number to be printed left-justified in the field.

{SIGN =2 Sign of number to be printed immediately to the left of the
left-most printed digit (“floating” sign).

If the sign of the number is to be printed, an appropriate sign character
must be available somewhere on the grid in use.

MINDIG (INTEGER*4) The minimum number of digits to appear ta the left
of the decimal point in the printed number. If necessary, leading
zeros will be added until there are MINDIG digits appearing.

Discussion: This subroutine is used for printing a number right-justified in a field of width
FLDSIZE whose lower left corner is at (Y, X) and whose lower right corner is at (Y, X + FLDSIZE).
The value of the number to be printed is given to the subroutine in the argument FPN in entry FNUM
for REAL*4 (single precision) values, or in the argument DFPN in entry DNUM for REAL*8

(double precision) values. The number is printed using the Linotron configuration (turret, grid, zone,
typesize, aspect ratio, etc.) in effect at the time of the call, with two exceptions: (1) if necessary,
the subroutine may momentarily switch zanes or shift mode in order to obtain and print a decimal
point or an appropriate sign character; and (2) the subroutine always sets the shift mode to unshift
before printing any digits. In either case the configuration is not permanently changed, and the
configuration after a call to FNUM or DNUM is identical to the configuration before the call. FNUM
or DNUM should be used only with “standard’ zones, i.e. not with special-character zones such as
zone 3 of grids 2 or 3.

The number will be printed with NODEC digits to the right of the decimal point,
the number having been properly rounded to this precision. To the left of the decimal point, at least
MINDIG digits will appear: the subroutine will add leading zeros if necessary to insure that MINDIG

24

digits are printed. Of course, if the magnitude of the number is large enough, more than MINDIG digits
may appear. Regardless of the field size, the maximum number of digits - including leading zeros - that
can be printed in the field is sixteen. However, the maximum number of significant digits that can be
printed in the field is only nine.*

The user can have the algebraic sign of the number printed by specifying ISIGN = 1 or
2. If ISIGN = 1, the sign will be printed at the (eft extrem..; of the field. {f ISIGN =2, the sign will be
printed immediately to the left of the left-most printed digit, wherever in the field this happens to be.
The sign character to be used is determined by the value of FPN or DFPN: negative values will cause
a — sign to be printed, and zero or positive values will cause a + sign to be printed. Since many zones do
not contain + or — sign characters, this subroutine may switch zones in order to obtain a suitable sign
character. However, the subroutine will not switch turrets (grids), so the user should make sur~ that any
sign characters required are available somewhere on the grid in use.

In zones without a decimal point (period) character, the subroutine may also switch
zones in order to obtain and print it.

The user should make sure that the field size specified in the argument FLDSIZ is wide
enough to contain the number as printed, including all digits, the decimal point, and the sign if desired.
If the printed number would overflow the designated field by more than half a digit’s width, the subrou-
tine will simply not print the number. Of course in many cases the user's designated field will be wider
than necessary, and if ISIGN = 1 the field size can be used ta determine how much white space will appear
between the printed digits and the sign character.

The scbroutine is constructed to make it easy to print a column of aligned numbers of
varying magnitude. For instance, the call to FNUM or DNUM can be located in a DO-loop where only
the Y coordinate and the value of the number to be printed vary:

DIMENSION VALUE (50)

Y =800.
DO 1001 =1,50
Y =Y +200.
100 CALL FNUM (Y,500., 1000., VALUE (1), 4,1,2)

This type of coding would produce a column of printed numbers with signs, decimal points, and end-
figures vertically aligned, regardless of the individual values of the elements in array VALUE.

Examples of Use: See Appendix A, Sample Program, Statements 0055, 0058, 0063.

*For this purpose, significant digits are any digits which remain if the decimal point and « high-order
zeros are ignored. Thus, 3.1416000 has eight significant digits and 00.00037401 has five.

25

Entry:

Purpose:

Discussion:

Arguments:

Subroutine INUM

CALL INUM (Y, X, FLDSIZ, INT,ISIGN, MINDIG)

This subroutine accepts an integer number and constructs the necessary tape codes to
print it. The printed number wili appear right-justified in a field on the page as speci-
fied by the user.

Y, X

FLDSIZ

INT
ISIGN

MINDIG

(both REAL*4) The page coordinates, in user units, of the lower left corner
of the field in which the number is to be printed. Negative coordinate op-
tion valid.

(REAL*4) The width (i.e. the size in the X direction) of the field in which
the number is to be printed, in use: units.

(INTEGER*4) An integer number to be printed.

(INTEGER*4) Sign option:

ISIGN =0 Sign of number not to be printed.

ISIGN =1 Sign of number to be printed left-justified in the field.

ISIGN =2 Sign of number to be printed immediately to the left of the
left-most printed digit (““floating’’ sign).

If the sign of the number is to be printed, an appropriate sign character
must be available somewhere on the grid in use.

(INTEGER*4) The minimum number of digits to appear in the printed
number. If necessary, leading zeros will be added until there are MINDIG
digits anpearing.

This subroutine is almost identica! to FNUM in function, logic, and use, except that
in the case of INUM, the number to be printed is an integer, and no decimal point is printed.

See the Discussicn for subroutine FNUM.

Example of Use: See appendix A, Sample Program, Statement 0052.

26

Subroutine ANUM

Entry: CALL ANUM (Y, X, FLDSIZ, NN, NCHAR)

Purpose: This subroutine accepts a number, represented by an array of EBCDIC characters, and
constructs the necessary tape codes to printit. The printed number will appear right-
justified in a field as specified by the user.

Arguments: Y, X (both REAL*4) The page coordinates, in user units, of the lower left corner
of the field in which the number is to be printed. Negative coordinate
option valid.

FLDSIZ (REAL*4) The width (i.e. the size in the X direction) of the field in which
the number is to be printed, in user units.

NN (INTEGER*4) The number of characters in array NCHAR.

NCHAR (Array of A4-formattad words) An array of contiguous EBCDIC characters
representing the number to be printed. (The corresponding Hollerith literal
can be substituted for an array name).

Discussion: This subroutine is used for printing a number right-justified in a field of width FLDSIZE
whose lower left carner is at (Y, X) and whose lower right corner is at (Y, X + FLDSIZE). The number to
be printed is given to the subroutine as an array of characters in array NCHAR. The number is printed
using the Linotron configuration (turret, grid, zone, typesize, aspect ratig, etc.) in effect at the time of
the call, with two exceptions: (1) if necessary, the subroutine may momentarily switch zones or shift
mode in order to obtain and print sign characters, decimal points, or commas; and (2) the subroutine
always sets the shift mode to unshift before printing any digits. In either case the configuration is not
permanently changed, and the configuration after a call to ANUM is identical to the configuration before
the call. ANUM should be used only with “standard”’ zones, i.e. not with special-character zones such

as zone 3 of grids 2 or 3.

NCHAR may have any number of contiguous EBCOIC characters of any of the foliow-
ing five types: decimal digits (hex FO thru F9), periods (hex 4B), commas (hex 6B), plus or minus signs
{hex 4E or 60), and blanks (hex 40). Blanks are ignored. The decimal digits, periods, commas, and signs
will cause ANUM to select and print the corresponding character images trom the zone in use. These
characters will be printed contiguously and in sequence, and the group of printed characters thus formed
will appear right-justified in the specified field on the page. If necessary, this subroutine may switch
zones in order to obtain suitable sign characters. In zones without period or comma characters, the sub-
routine may also switch zones in order to obtain and print them. In no case will the subroutine switch
turrets (grids).

The user should make sure that the field size specified in the argument FLDSIZ is wide
enough to contain the number as printed. If the printed number would overflow the designated field
by mare than half a digit's width, the subroutine will simply not print the number.

The subroutine is constructed to make it easy to print a column of numbers with
end-figures aligned, and is mast suitable for printing numbers read by the user's program from an extern-
al input source. For instance, the call to ANUM can be located in a DO-loop where only the Y coordinate
varies:

27

s

DIMENSION KCHARS (5)

FORMAT (5A4)

Y =800.

DO 1001 =150

Y =Y +200.

READ (5,1) (KCHARS(K), K=1,5)

100 CALL ANUM (Y, 500., 2000., 20, KCHARS)

1 > of ing would produce a column of printed numbers with end-figures vertically aligned,
§ the format of the characters read from the input records (hence the format of the num-
ed by ANUM) may vary.
|
53 xample of Use: See Appendix A, Sample Program, Statement 0096.

28

Subroutine RULE

Entries: CALL RULX (YORG, XORG, TRM, IWT)
CALL RULY (YORG, XORG, TRM, IWT)
CALL RULD (YORG, XORG, YTRM, XTRM, IWT)

Purpose: This subroutine draws iiorizontal, vertical, and diagonal rules of optional widths.

Arguments: YORG (REAL*4) The Y coordinate, in user units, where ruling is to begin.
XO0RG (REAL*4) The X coordinate, in user units, where ruling is to begin.

TRM (RULE*4) If RULX is called, the X coordinate, in user units, where ruling
terminates. |f RULY is called, the Y coordinate, in user units, where ruling

terminates.

YTRM (REAL*4) In diagonal ruling, the Y coordinate, in user units, where ruling
terminates.

XTRM (REAL*4) In diagonal ruling, the X coordinate, in user units, where ruling
terminates.

IWT (INTEGER*4) The rule weight code:

1 =alight rule, 0.003 inch width.
2 = a medium rule, 0.007 inch width.
3 = a heavy rule, 0.015 inch width.

Discussion: Horizontal and vertical ruling is a hardware capability of Linotron. Diagonal ruling is
a pseudo-operation which creates a rule by overlap printing of periods. The RULD entry narmally uses
the period from zone 2 of the Naval Observatory grid. If unavailable, the corresponding character from
zone 2 of the grid currently in use will be used, but this may produce undesirable results.

Because of Linotron restrictions, the RULE routines may slightly alter the origin and
termination coordinates. However, the resulting deviations of position and length will not exceed 0.0046
inch, which should be imperceptible.

The user may be aware that Lirnotron rules are produced in a 5-point typesize mode.
This is automatically accommodated by RULE. When ruling is completed, the typesize is restored to
the user specified value.

Examples of Use: See Appendix A, Sample Program, Statements 0011 to 0019, 0032, 0078.

Entries:

Purpose:

Arguments:

Discussion:

found on manual composition equipment. The use of STAB is similar to setting or moditying a group

of “tab-stops”” on a keyboard. The first “tab-stop" is at the value of FMRG which is initialized by MARG,
and which is the left margin. RTTN has an effect similar to a carriage return; the X coordinate is set

at the left margin, the Y coordinate is incremented by the amount of SPACE, and an indicator is estab-
lished by FATS enabling the use of “tabs”. Thereafter, calls to TABB result in shifts of the X coordinate
to the values in FTAB, in a consecutive manner. Initialization of MARG must precede any reference to
RTRN. Both MARG and STAB must be called before any use of TABB. Once the margin and “tabs”
have been initialized, they remain in effect for the entire composition job, unless altered by the user.
Failure to observe the precedence in using these routines will produce unpredictable results.

CALL
CALL
CALL
CALL
CALL
CALL
CALL

Subroutine SETABS

STAB (N, FTAB)
MARG (FMRG)
DELY (YINC)

DELX (XINC)

OSET (YORG, XORG)
RTRN (SPACE)
TABB

This subroutine allows specifying and incrementing of page coordinates without identi-
fying a composing function to be perfurmed at the resulting coordinates.

N (INTEGER*4) A number less than or equal to 49 giving the length of array
FTAB.
FTAB (REAL*4) An array containing 49 or less X coordinates, in user units, for
use in setting material in tabular, columnar, or outline form.
FMRG (REAL*4) The X coordinate, in user units, of the lefthand margin of com-
posed matter.
YINC (REAL*4) A positive increment, in user units, to be added to the current
Y position coordinate.
XINC (REAL*4) A pasitive increment, in user units, to be added to the current
X position coordinate.
YORG (REAL*4) Value in user units of the Y coordinate for subsequent operations.
X0ORG (REAL*4) Value in user units of the X coordinate for subsequent operations.
SPACE (REAL*4) An increment, in user units, to be applied to the current Y
position coordinate.
These routines were designed to give the user a set of operations analogous to those L

An increment, XINC, is applied to the X coordinate by DELX. Its effect is similar to

repetative use of a typewriter space bar; the Y coordinate is unchanged. DELY leaves the X coordinate
unchanged but increments the Y coordinate by YINC in the manner of an “index” key found on some
manual equipment. Since XINC is arbitrary, it may cause the X origin to exceed the next “tab-stop”;
a subsequent TABB aperation may then result in superimposed characters.

Any point within page limits may be specified by OSET. Its operations is similar to
rolling and slewing a typewriter carriage. The arguments YORG and XORG are given to the Linotron

30

as the page coordinates for a subsequent operation. As with DELX, its use may disturb the TABB se-
quencing.

The use of RTRN and TABB represent a means of positioning and spacing type. OSET,
DELX, and DELY represent another. Since mixing of these two means may easily result in superimposed
and misaligned type, it is recommended that a choice of methods be made, and adhered to, in the pro-
gramming planning stage. It is also possible to construct an entire FATS Linotron job with no reference
to any SETABS routines, since page coordinates may be specified by the actual printing routines. SETABS
has been provided for user convenience, and it presents the possibilities for alternative philosophies and
program logic.

Examples of Use: See Appendix A, Sample Program, Statements 0002, 0005, 0008, 0009, 0046, 0050,
0051, 0053, 0056, 0059, 0065.

31

Subroutine SAVE

Entries: CALL SAVE (iSAV)
CALL SAVE (ISAV,INDCTR)
CALL SPIL (ISAV)
CALL CLER (ISAV)

Purpose: This subroutine allows the user to save tape codes generated by a sequence of FATS
subroutines, for use later in the program.

Arguments: ISAV (INTEGER*4) The identification number of one of three “save areas’ :
ISAV =1,2,0r3.
INDCTR (INTEGER*4 variable name to be given a value by the subroutine). An
error indicator returned to the user's program:
0 = Save process OK.
1 = Save process error - save area overflow.

Discussion: The one-argument call to SAVE (i.e. CALL SAVE (ISAV), where ISAV =1, 2, or 3)
begins a “’save process” which affects the operation of any FATS subroutine subsequently called. The
two-argument call to SAVE (i.e. CALL SAVE (ISAV, INDCTR), where ISAV has the same value as in
the one-argument call, and INDCTR is an integer variable name) ends this save process. During this save
process - thatis, between the two calls to SAVE - any FATS subroutine other than STRT, PAGE,
TERM, or PASS can be called:

CALL SAVE (ISAV) Begins save process.

CALL OSET ())

CALL PRNT () ,
k CALL RULX () Any coding except calls
: { toSTRT, PAGE, TERM,

or PASS
et.

3

CALL INUM () 73

CALL SAVE (ISAV,INDCTR) Ends save process

During the save process, the tape characters generated by FATS subroutines are stored in a “'save area"

in core, in addition to being written on the Linotron tape as usual. There are three save areas, numbered
1,2, and 3, each with space for 4096 tape characters (equivalent to two blocks on the Linotron tape).
The argument ISAV, which must have the same value in both the one- and two-argument calls, designates
in which save area the user wishes the tape characters to be stored. The argument INDCTR is given a

32

value of 0 or 1 by subroutine SAVE as it ends the save process. |f INDCTR=0, then the save process was
successfully completed; if INDCTR=1, a save area overflow occured at some point, hence not all of the
tape characters generated could be saved. Note that the save process (even if an overflow occurs) does
not interfere with the normal output process whereby tape characters generated by FATS subroutines
are written onto the Linotron tape, nor does it affect normal program logic in any way. Therefore, from
the user’s viewpoint, the save process does nothing except slightly increase the execution time of the
program segment to which it applies.

At a later point in the program, when the user wishes to write the contents of a save
area onto the Linotron tape, CALL SPIL (ISAV) should be used, where ISAV designates which save area
is to be “spilled”. This call can be repeatec as many times as necessary, since SPIL does not clear the
save area. Under normal conditions the call to SPIL will praduce the same results on the printed page as
re-executing all of the FATS subroutines called during the original save process - but with a substantial
saving of execution time. For example, if the user's program is to produce 20 pages of some table of
data, the page title, column headings, rules, etc. - which are the same on every page - should be generated
during a save process when the first page is produced. Then, on succeeding pages, the user has to simply
“spill” the appropriate save area and the page title, etc. will appear as on the first page. Animportant
item to note is that SPIL performs an automatic re-set of the Linotron configuration before returning
to the user’s program, so that the Linotron configuration after the call to SPIL is always identical to the
configuration before the call; this is true regardless of any temporary changes in the Linotron configu-
ration resulting from tape characters in the save area.

A single save area can be used at different points in the program to store different groups
of tape characters. To clear an already used save area for re-use, use CALL CLER (ISAV), where ISAV
designates the appropriate save area. This need not be done initially.

The use of save areas appears simple. The user must, however, keep track of any changes
in the Linotron configuration as his program logic progresses. Two important points must be kept in
mind. The first is that if the user expects the tape characters in a specific save area to produce the same
results on the printed page each time the save area is “spilled”’, the Linotron configuration must be ident-
ical at the time of each call to SPIL, and this configuration must match the Linotran configuration in
effect when the save process for that particular save area was started. This point is fairly obvious in
theory, but it is easy to overlook when a program is actually coded. The second, more subtle, compli-
cation arises when the user changes the Linotron configuration during the initial save process (if, for ex-
ample, TYPE is called between the two calls to SAVE). Since the save process has no effect on normal
program logic, any such configuration change, according to the usual rules, continues in effect until the
user changes it again. Thus, a Linotron configuration change occuring during the save process may con-
tinue in effect beyond the save process. However, when the save area is “spilled" this same configuration
change, now caded in the tape characters in the save area, cannat continue in effect beyond the call to
SPIL since SPIL resets the configuration immediately before returning to the user's program. It can
simply be remembered that the Linotron configuration after any call to SPIL is always the same as before
the call, but this is not necessarily true for the initial save process. Thus, the user must carefully analyze
the Linotron configuration in effect at each point in his program; this is a good rule to follow whether
or not save areas are used.

With the above in mind, and with a little care in coding, save areas can have great flexi-
bility. For example, a save area can be filled in segments:

33

CALL SAVE (2)

- Save area 2 partially filled.
CALL SAVE (2, INDCTR)

CALL SAVE (2)

More tape characters added

CALL SAVE (2,INDCTR)_ 'osaveareal.

CALL SPIL (2) All tape characters in save
: area 2 “spilled"”’.

As long as there is still room in a given save area after one save process (which can be determined by the
value of the argument INDCTR), more tape characters can be concatenated onto the initial group by
another save process. Then, when SPIL is called, all the tape characters present in the save area go con-
tiguously onto the Linotron tape. Another flexible aspect of save areas is that save processes for differ-
eni save areas can be nested or overlapped in any combination:

CALL SAVE (1)

CALL SAVE (2)
Save process for area 2.

CALL SAVE (3)
Save process

for area 1.

CALL SAVE (2,IND2)

Save process for CALL SAVE (1,IND1)
area 3. .

CALL SAVE (3,IND3)

Since calls to SAVE do not generate any tape characters themselves, the “inside" calls to SAVE have
no effect on the save process(es) already in progress. Whether all this flexibility can be practically applied
is dependent only on the user's ingenuity.

Examples of Use: See Appendix A, Sample Program, Statements 0030, 0040, 0075.

34

Subroutine LINBUF

Entries: CALL BBUF
CALL EBUF (Y, X, IPRNT)
CALL CBUF (IERR,WIDTH)

Purpose: This subroutine adds up the total width (in user units) of a line of print, and permits
the user to print the line left-adjusted, right-adjusted, or centered at a designated loca-
tion cin the page.

Arguments: Y, X

(both REAL*4) The page coordinates, in user units, of a location on the
printed page. Negative coordinate option not valid; both Y and X must be
explicitly given.

IPRNT (INTEGER™4) Code specifying how line of print is to be adjusted with
respect to location Y, X:
1= Line is to be left-adjusted at Y, X; i.e. the left-most character in the
line will have its left edge at x=X.
2 = Line is to be right-adjusted at Y, X; i.e. the right-most character in the
line will have ite right edge at x=X.
3 = Line is to be centered at Y, X; i.e. the ends of the line will be equidis-
tant from x=X.
In all cases, the bottom edge of the line (the “‘z4ine”") will be located at y=V.
IERR (INTEGER*4 variable name to be given a value by the subroutine). Error
code returned to the user’s program:
0 = Line width determination OK.
1 = Line width determination invalid - line is composed of more than 1024
tape codes.
2 = Line width determinaiion invalid - line contains a forbidden tape code.
WIDTH (REAL*4 variable name to be given a value by the subroutine). Width
of the line, in user units, returned to the user’s program.
Discussion: The call to BBUF begins a special ““buffering process” which atfects the operation of

any FATS subroutine subsequently called (BBUF = Begin BUFfering). The call to EBUF ends this buf-
fering process (EBUF = End BUFfering). During this buffering process - that is, between the cails to
BBUF and EBUF - all calls to FATS subroutines must generate only one /ine of print, progressing from

left to right:

Left side of line

CALL BBUF Begins buffering process
CALL PRNT()

CALL DELX()

CALL SCAR() These calls must refer to

one line of print

35

etc.
CALL PRNT(]
Right side of line CALL INUM()
CALL EBUF() Ends buffering process

This buffering process, supervised by subroutine LINBUF, stores the tape characters generated by FATS
subroutines in a buffer area of core, rather than permitting them to be written onto the Linotron tape.
As the buffer is filled, LINBUF reads and interprets the tape characters and adds up the width of the
line of print they represent. The call to EBUF ends the buffering process and transfers the contents of
the buffer onto the Linotron tape, with the line's initial coordinates adjusted so that the line will appear
at the location and orientation on the printed page specified by EBUF's arguments Y, X, and IPRNT.
Several important restrictions apply to the FATS subroutine calls occuring during the buffering process:

(1) Noexplicit Y or X coordinates can be used in the calls; the negative coordinate option must be used
in all calls requiring Y or X coordinates. Therefore, calls to MLTP, MLTC, OSET, TABB, and RULE
cannot be used. Spacing within the line can be accomplished by calls to DELX.

(2) Callsto STRT, PAGE, TURN, TABB, RTRN, TERM, or PASS cannot be allowed.
{3) “Nested" calls to BBUF and EBUF cannot be allowed.

Almost anything else can be used: for instance, the type size can be changed in the middle of the line;

the aspect ratio can be changed; pseudo-italic or pseudo-bold print can be used for all or part of the line;
grids*, zones, and shift modes can be changed within the line, and so on. Any such changes in the Linotron
configuration are considered “permanent” in the sense that they continue to apply, even beyond the call

to EBUF, unless changed by the user.

Two error conditi s can occur during the buffering process. The first is a buffer over-
flow, meaning that the line is comprised of more than 1024 tape characters; this rarely happens. The
second, more common, error condition is that a “forbidden’” tape character is present, which results from
the user violating one of the restrictions above. In either case the line cannot be printed; the call to EBUF
will end the buffering process but nothing will be written onto the Linotron tape, and the line will simply
not appear on the printed page. The user’s program will continue uninterrupted, essentially as though
all the coding between the calls to BBUF and EBUF was not executed at all. [n this case the Linotron
configuration will be the same as it was bafore BBUF was called.

The user can check an the errar condition and in addition get a numerical value for

the line width (in user units) by calling CBUF (CBUF = Check BUFfering). The line width is returned

to the user in the argument WIDTH, and the error condition code (= 0, 1, or 2) in the argument IERR.

If IERR # 0, the width returned is invalid; in addition, the line cannot be printed and will be "“lost’" when
EBUF s called. CBUF can be called anytime after BBUF is called (but before BBUF is called again for
another line) but the values returned in WIDTH and IERR apply only to the section of the line generated
prior to the call to CBUF. Therefore, in order to obtain the fu// width of the line and the fina/ error code,
the user must call CBUF immediately before the call to EBUF. These final values can also be obtained

*Frequent grid (i.e. turret) changes are not recommended.
36

ex post facto by calling CBUF after the call to EBUF.

It sheuld he mentioned that the butfering process will considerably slow the execu-
tion time of the user's program if used too frequently. If page headings, titles, etc., which appear on
every page are to be centered, the best procedure would be to “buffer’” them on the first page only and
save the tape characters generated by the BBUF-to-EBUF sequence in a save area (see subroutine SAVE).
Then, on subsequent pages all the user has to do is to ““spill” this save area. For example, the following
coding could be used to center, print, and save the title on the first page:

CALL SAVE (1)
CALL BBUF

Calls which generate title of page

CALL EBUF (YTOP, XMIDDL, 3)
CALL SAVE (1,INDCTR)

Then, on subsequent pages, the sme centered title could be printed by a single

CALL SPIL (1)

Examples of Use: ~ See Appendix A, Sample Program, Statements 0026, 028, 0034, 0038, 0088,
0090, 0091.

Subroutine ASIS

Entry: CALL ASIS (NN,ITCHAR)

Purpose: This subroutine takes an array of tape codes and writes them “as is” onta the Linotron
tape without performing any interpretation, alteration, or editing o any kind.

Arguments: NN (INTEGER*4) The number of characters in array ITCHAR.

ITCHAR (Array of A4-farmatted words) An array of contiguous EBCDIC charac-
ters; the characters must be valid tape codes, i.e. coding directly usable
by the Linotron machine. (The corresponding Hollerith literal can be
substituted for an array name).

Discussion: This subroutine should be used only by programmers familiar with “raw’ Linotron
tape character coding. ASIS writes the tape characters in array ITCHAR (no [imit on size) directly onto
the Linotron tape. The only ather function AS!S performs is an automatic re-set of the Linotron con-
figuration immediately before the return to the user's program. This insures that the Linotron config-
uration after the call to ASIS is always identical to the configuration before the call, regardless of any
temporary changes in the Linotron configuration resulting from the tape characters in array ITCHAR.

Since ASIS does virtually nothing, it is quite efficient and could be used to cut pro-
gram execution time. |t also has use in unusual situations that could not be efficiently handled by other
FATS subroutines.

38

e A S

1165l LA

Y

i

Subroutine NOOP
Entry: CALL NOOP (NBLNKS)
Purpose: This subroutine places blank characters onto the Linotron tape, for easier readability

of tape dumps. Blanks are treated as ““no-op’’ codes by the Linotran machine.

Argument: NBLNKS (INTEGER*4) For NBLNKS = 0, the number of blanks to be written.
If NBLNKS < 0, the remainder of the current tape block will be filled
with blanks.

Discussion: This subroutine can be used to improve the readability of Linotron tape dumps by

enabling the user to place blanks at appropriate locations between groups of tape characters generated
by calls to FATS subroutines. If NBLNKS is negative (any negative value), the remainder of the current
tape block is padded with blanks, and any tape characters generated by subsequently called FATS sub-
routines wil! be written in a new block. No function is performed by the Linotron machine when it
encounters blanks on the Linotron tape; blanks are therefore effectively “no-op” codes.

For reasons of tape use efficiency, this subroutine should be used with discretion.
Also, do not call NOOP with NBLNKS < 0 when either a save process (see subroutine SAVE) or a line
buffering process (see subroutine LINBUF) is in effect.

Examples of Use: See Appendix A, Sample Program, Statements 0031, 0039.

39

SECTION il

APPENDICES

A\ Preceding page blank

Appendix A

Examples

The following examples are included for illustrating the use of FATS. They have been extracted from
programs which fiave actually composed pages.

EXAMPLE 1:

Bureau of Land Management Ephemeris, page 19.

The printed page is reproduced here as page 43. Initialization is performed by the following segment.

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
50 CALL

TURT(2+40,0,0)
STRT(JBNO,y IFRM)
TYPE(lslele7)
SQEZ(1)

SPEC(1)

TURN(1)
DIMN(77./164481.)
MARG(2.)

IDEN (150.90491)

The call to TURT establishes the position of the Naval Observatory grid in turret position 1. STRT passes
the job and frame numbers to FATS. Turret 1, zone 1, unshift, and 7 point size are selected by TYPE.
Normal width, face, and page orientation are specified by the next three routines. The arguments of DIMN
create an unusual system of units wherein 81 user units correspond to 4.8125 inches. MARG sets the left
margin at X=2 user units. The job and frame numbers are printed on the frame by IDEN, far enough from
the images to allow for later trimming.

On the sample page, yearly changes occur not only in the table body, but also in certain arguments.
The six horizontal arguments, labelled A on page 43, are computed by the composition program and entered
into storage arrays. The following instruction sequence shows how the arguments were composed.

CALL SIZE(T7)

CALL

SQEZ

(2)

DO 120 K=1,3

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

INUM
SCAR
INUM
SCAR
INUM
SCAR
INUM
SCAR

120 CONTINUE
CALL SQEZ(1)

(18¢961e2645.5%Ky1e¢354KM(K)y041)
('10"1.'1'302"1.')
(=les=levle35,KS(K),0,2)
(-100'1001'3'2'.Y')
(27¢5961026455%K91e35¢KM(K+3),0,1)
("10"1-'1'3'2"1.')
(=les=1les1e35,KS(K+3),0,2)
(-les=lesly3,2,'Y")

42

19

1973

AZIMUTH OF POLARIS AT ALL HOUR ANGLES, 1973

CORR. TO AZIMUTH

Mean Add for
Time Dect. +89°
H;ur Mean Declination + 89° 08’ 40” of
Angle 830" [820" 8'10" h
Subtract for
Latitude Dect. +89°
30°| 32°(34°(36°| 38°(40°| 42°| 44°(46°(48°(50° '50"| 9'00"| 910
h m ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
5 549 L [A X 03 05 0.8
55.2 s 1767 | e 02| 05| 07
55.5 739 [- [02| 05| 07
5 557 CERCIN i b B 0.2 05 0.7
559 (il 69.1 =L C 0.2 o4 07
56.2 67.0 Sisis 0.2 04 0.7
5 564 piee e (651 0.2 0.4 0.6
56.5 G 635 |- 0.2 24 0.6
56.7 61.9 | = 0.2 04 0.6
5 569 | --- | 605 L <leik 0.2 04 0.6
570 59.3 P P .. T A P e e o? 04 06
59.0 [59.3 [605 (61.9 {634 (651 [67.0 (69.1 (714 |73.9 (767 (799 0.2 0.4 0.7
6 090 |59.2 604 618 | 634 (650 |669 |69.0 |71.2 |738 | 766 |797 0.2 04 0.7
19.0 {59.0 {603 {616 | 63.1 648 | 667 (687 710 |735 |763 |794 0.2 04 06
289 | 58.7 | 599 | 613 | 628 |645 | 663 | 684 | 706 | 731 |759 |790 0.2 04 0.6
6 389 1583 1595 (609 624 |640 /658 [67.9 701 |726 |753 |784 02 04 0.6
489 | 578 |59.0 | 603 | 618 |63.4 652 |67.2 (694 |719 |746 {777 0.2 04 0.6
589 | 57.1 | 583 [59.7 [61.1 |62.7 [645 | 665 | 687 (711 |738 | 768 0.2 04 0.6
7 088 | 564 |576 |589 (603 1619 | 637 |656 |678 |70.1 [728 |758 0.2 04 0.6
188 | 555 | 567 | 58.0 594 |61.0 |62.7 |64.6 |66.7 |69.1 |71.7 | 746 0.2 04 0.6
288 (546 (557 {57.0 {584 (599 616 |635 |656 |679 |704)733 0.2 04 0.6
7 387 |535 |546 559 |57.2 |58.7 | 604 |62.2 | 643 |665 [69.0 | 718 0.2 04 0.6
48.7 | 524 535 547 {560 |57.5 !591 {609 }629 }651 [67.5 |703 0.2 c4 0.6
58.7 | S1.1 |52.2 (534 | 547 561 |57.7 [594 |614 |635 |659 |685 0.2 04 0.6
8 087 |498 | 508 [519 |532 |546 |561 [57.6 |59.7)618 | 641 |66.7 0.2 04 05
186 (483 [493 | 504 | 517 [53.0 |545 |56.1 [58.0 [60.0 |62.2 | 648 0.2 04 05
286 | 468 | 478 | 488 | 500 |51.3 [528 |544 |56.1 |581 | 603 |627 0.2 03 0.5
8 386 |452 |46.1 |[47.1 | 483 (495 | 509 |525 |542 | 561 |58.1 |605 0.2 03 05
48.6 | 434 | 443 | 453 | 464 | 477 | 490 [505 | 521 |539 |559 |582 0.2 03 05
585 | 41.7 1425 | 435 | 445 1457 | 470 | 484 500 [51.7)536)558 0.2 03 05
9 085 [398 |40.6 |415 | 425 436 | 449 |46.2 | 47.7 (494 | 512 | 533 01 03 04
185 | 379 | 386 | 395 | 405 |415 | 427 | 439 (454 | 469 | 48.7 | 506 01 03 04
284 | 358 |366 374 |383 |393 (404 (416 |430 |444 | 461 | 479 01 03 04
9 384 |338 |345 [352 |36.1 |370 |380 [39.2 |405 |41.9 |434 |451 0.1 0.2 04
484 | 316 |323 |33.0 |338 (347 |356 |36.7 |379 [39.2 |407 |423 0.1 0.2 03
58.4 | 29.4 |30.0 |30.7 |314 |322 |331 |341 [352 (365 |37.8 |393 0.1 02 03
10 083 |27.2 |27.7 (283 [29.0 |29.8 |306 |315 |325 |33.7 (349 |363 0.1 0.2 0.3
183 (249 | 254 | 259 |26.6 (27.2 |28.0 |288 |298 (308 |319 |332 0.1 0.2 03
283 1225 [230 | 235) 240 |247 |254 |26 |27.0 |279 |289 |301 0.1 0.2 0.2
10 383 | 201 | 205 [21.0 | 215 |22.0 |22.7 [233 |241 [249 | 258 | 269 0.1 01 0.2
48.2 |17.7)18.0 | 18.4 | 189 |19.4 | 199 | 205 |21.2 219 |22.7 |236 0.1 0.1 0.2
58.2 | 152 | 155 | 159 | 163 (167 |17.1 |17.7 |18.2 | 188 | 195 | 203 0.1 0.1 0.2
11 082 J12.7 | 13.0 | 133 | 136 |139 |143 |148 |152 [158 |163 |17.0 0.0 01 0.1
18.1 (10.2 (104 | 106 | 109 (112 | 115 |11.8 |12.2 |126 (131 |136 0.0 0.1 0.1
28.1 77 78 8.0 8.2 84 8.6 8.9 9.2 9.5 99 | 102 0.0 01 01
11 381 5.1 5.2 53 55 56 58 59 6.1 63 6.6 68 0.0 0.0 0.1
48.1 26 2.6 21 27 28 29 30 L 32 33 34 0.0 0.0 0.0
58.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 00 0.0 0.0

Tan A =

cosd tand - sind cost
The product, sind cos t, is subtracted for hour angles
0° to 90° and added for hour angles from 90° to 180°.

@

!

The printed quantities are taken from arrays KM and KS, and set by INUM. Reference to the Naval Observatory
grid chart and the description of SCAR will clarify the use of grid location characters “T" and “Y" to select
minute and seconds symbols. The numbers are set condensed by invoking SGEZ. This is to allow two-digit
“minutes’ figures in future years.

The entire table body is set by the following sequences, with the exception of the logic for deciding be-
tween numerals and dot leaders.

900 CALL OSET (33.42.)
DO 240 K=1,IBLOK
M = INDX(K,KL)
DO 230 N=1,M
KT=KT+1
IF(N.NE.1)GO TO 205
CALL INUM (-le9y=ley2ey IH(KT)yO0,1)
205 CALL FNUM (-1¢90e97e5+EM(KT)y14042)
208 DO 215 J=1,11
210 CALL FNUM (-1¢90.98.44.8636%J4BD(KT9yJ)y14041)
215 CONTINUE
D0 220 J=1,3
CALL FNUM (-1¢90e964.5+5.5%J9yCOR(KT9yJ)9140,s1)
220 CONTINUE
CALL RTRN(1.5)
230 CONTINUE
CALL RTRN(1l.)
240 CONTINUE

The logic, including indexing, determines vertical and horizontal spacing as well as the inclusion of leading
figures in the “’h" column. All coordinates, as well as the computations appearing as arguments in FNUM and
INUM, are in user units. The flexibility of FATS is emphasized by the fact that data may be accessed through
1/0 operations while compaosition proceeds. In this sequence, tabular entries are transferred from storage to
the Linotron control tape by the number writing routines FNUM and INUM. It should be noted that the num-
ber of digits appearing in each tabular entry is controlled by argument values in FATS routines, and does not
require user coded program logic beyond initial selection of the parameters.

The footnote on the sample page was composed by the following sequence.
CALL SQEZ(2)

CALL PRNT(127.5925.948y'| TAN |A *,1.)
CALL SCAR(-leg=le9ly342,4'9')

CALL RULX(127« 933.953.41)

CALL PRNT(126¢5¢41.959'SIN T'445)
CALL PRNT(129¢934.,4,°'C0OS 'y.38312)
CALL SCAR(=-1lev-1le9les342,4'2")

CALL PRNT(=1le9=lesb,y" TAN '4.5)
CALL SCAR(=1le9=leyle3,1,'F")

CALL pRNT("lo'-lopl" .'10)

CALL SCAR(=-1ley-le9ly3,1,'0")

CALL pRNT('l."lo"Q" SIN.')..)

CALL PRNT{=leys=leol,y"' *',.38312)

CALL SCAR(=1le9y=le9l9342,'2')

CALL PRNT{=1ey=1ley7y* COS T',.5)

44

_

CALL PRNT(131e917e912y"ITHE PRODUCT'41l4)

CALL SCAR(=1ley=leyplys291s'y")

CALL PRNT(=1le9=1leyb,’ SIN '4.5)

CALL SCAR(-1e9-1e9l9342+'2")

CALL PRNT(=lep=leyTy" COS T'y.5)

CALL SCAR(=les=leyls291,'y")

CALL PRNT(-le9y-1e930,"' IS SUBTRACTED FOR HOUR ANGLES',l.)
CALL INUM (133.417¢+14+0,0,1)

CALL SCAR(-=le9s=leyle342,4'R")

CALL pRNT('l."'l""" TG .'lo)

CALL INUM (=le9=1e92¢990,0,2)

CALL SCAR(=lev-1les1y4342,'R")

CALL PRNT(-1ley—1ey32y"' AND ADDED FOR HOUR ANGLES FRCM *',1,)
CALL INUM (-1le9-1692+9909042)

CALL SCAR(=1ls9s=1lesl9352,4'R")

CALL PRNT(=ley=lev4s® TO "41.)

CALL INUM (’100-1-'3.'18010'3)

CALL SCAR(=1ley=le9ls342,'R")

CALL SCAR(=1leys—=lesle291s'e")

CALL SQEZ(1)

See B on page 43. In this series of statements, the logic is straightforward. The length of coding is due to
the number of special characters which require individual handling. The composition of the footnote will be
better understood by proceeding through the coding step-by-step, referring to the grid character chart and
routine descriptions.

EXAMPLE 2: Sample Program

On the following pages is a sample program which generates two pages of Linotron copy with the aid
of FATS subroutines. The Linotron output pages produced by this program are also shown. The following
is an outline of the coding logic; for more detailed descriptions of the functions performed by each subrou
tine call, see the individual FATS subroutine descriptions in this Circular or the summarized descriptions in
Appendix F. Within the program, Fortran data set 5 refers to the card reader, while Foriran data set 6 re-
fers to the printer. The four digit numbers at the beginning of each paragraph below refer to the internal state-
ment numbers found to the left of each source statement in the program listing.

Job Initialization

0005 - 0003. FATS initialization calls. These calls provide information to FATS, but generate no tape
codes. Call to TURT specifies that grids 1, 2, 3, and 4 will be mounted on turrets 1, 2, 3, and 4, respectively
(see grid list on page 7). Call to DIMN establishes inches as user’s units for page and coordinate measurement.
Calls to MARG and STAB inform FATS of left margin of page and array of four “tab stops” to be used later
in the program.

Page 1

0010. Call to STRT opens Linotron tape. Job number is 005-827; beginning frame number is 0001.
STRT also establishes an initial configuration, with turret 1 (grid 1 mounted) positioned for printing.

0011-0019. Rules drawn: three horizontal rules, five vertical rules, and one diagonal rule. RULD will
change turrets so that period on the Naval Gbservatory grid can be used for generating the diagonal pseudo-
rule, but original turret (turret 1) is restored before return to user's program.

0020 - 0028. Boxheads and page heading printed. Page heading “TRIGONOMETRIC FUNCTIONS"
is automatically centered by the BBUF-to-EBUF sequence of statements 0026-0028.

45

|
I
|
|
3
b |
|
1
1

0029 - 0043. Credit line and accompanying rule are printed near bottom of page. Credit line is printed
in pseudo-italic type; the call to SPEC in statement 0035 begins the pseudo-italicizing pricess while the call
to SPEC in statement 0037 ends this process and resumes normal printing. Credit line is automatically cent-
ered by the BBUF-to-EBUF sequence of statements 0034-0038. All tape codes generated between statements
0030 and 0040 are saved in save area 1; statements 0041-0043 check for save area overfiow and stop execution
if overflow occurs.

0044 - 0046. Configuration for printing table body is established, degree symbol is printed, and Linotron
page location is set.

0047 - 0067. Body of table is printed. Loop cycles at each printed line. Y coordinate is advanced and
X coordinate is returned to left margin by call to RTRN in statement 0050. Use of negative coordinates in
calls to INUM, FNUM, and DNUM prevents these routines from establishing page coordinates. Instead, page
location is controlled by calls to TABB in statements 0051, 0053, 0056, and 0059. Each of these calls sets the
X coordinate to the position of the next “tab stop” while leaving the Y coordinate unchanged. Double-precision
tangent is used because of extra significant digits needed near 90°. Note that at 90° the tangent is not evaluated
or printed; instead, a centered asterisk is printed by statements 0065-0066.

0068 - 0072. Page identification. Note that page number is set in condensed-width type. Call to SQEZ
in statement 0069 sets the aspect ratio to 83%, while the call to SQEZ in statement 0071 resets the aspect
ratio to 100% (normal printing). IDEN prints the job and frame numbers at the lower right corner of the page.

Page 2

0073. Call to PAGE advances Linotron’s photographic film and initializes new page. Configuration is
left unchanged. The FATS frame counter is incremented by 1.

0074 - 0078. Credit line and page heading printed. Credit line and accompanying rule are printed by
“spilling” the tape codes in save area 1 (statement 0075), stored there when page 1 was generated (see discus-
sion of statements 0029-0043 above). Page heading and horizontal rule for top of page are then printed.

0079 - 0084. Zone and typesize are changed. Multiple-print call MLTP is used to print “km” and “days"”
several times on the page. Variables Y and X, later to be used as page coordinate arguments, are given initial
values.

0085 - 0096. Body of table is printed. Loop cycles at each printed line, which is to begin at X=0.500
inches and end at X=4.950 inches. Variable Y, which designates the Y coordinate of the printed line is incre-
mented, then an input card is read. (a listing of the input cards follows the program source listing). The card
contains, in the form of two EBCDIC character arrays, the data to be printed in the line. The first character
array, “LABEL", is to be printed left-justified in the line, while the second character array, “IVALUE", is
to be printed right-justified in the line. A string of periods (“’dot leaders”) is to fill the gap in the middle of
the line. The BBUF-to-EBUF sequence of statements 0088-0091 prints “LABEL" left justified; the width
of the printed version of “LABEL" is obtained by the call to CBUF. This width is then used in statements
0092-0094 to determine the starting X coordinate and number of dot leader periods to be printed. These dot
leader periods are printed using the multiple-character-print call MLTC in statement 0095. Finally, “IVALUE",
which contains only numeric digits, blanks, decimal points, and commas, is printed right-justified in a field
at the end of the line by subroutine ANUM.

0097 - 0100. Disciaimer line is printed, in turn-page mode. Coordinate values in call to PRNT in state-
ment 0099 are turn-page coordinates; i.e. they are measured from the turn-page origin located at the lower-
left corner of the page. Call to TURN in statement 0100 resets Linotron to normal mode.

0101 - 0105. Page identification. Similar to corresponding sequence on Page 1.
Job Termination
0106. Call to PASS advances Linotron’s photographic film, empties FATS Linotron tape output buffers,

46

and closes Linotrqn tape. No stop code for the Linotron is placed on the Linotron tape; therefore, it is
assumed that coding for more pages will be added to Linotron tape during a future run.

I FCRTRAN Iv G LEVEL 18 PAIN CATE = T:2¢c 0175874, PAGE CCO)
|
A c
| (% MAIN PROGRAM TO CREATE TWO PAGES OF LINOTRON COPY.
| {4
| coo1 REAL®8 OANGLE, TANANG, OFLOAT, OTAN
[0002 OIMENSION XTABS(4)s LABEL(10),. IVALUE(3)
| 0003 1 FORMAT (//,* SAVE AREA OVERFLCwW *,//)
0004 2 FORMAT (16,6X,10A4,4X,344)
0005 OATA XTABS/l.402+1¢3.lebal/
4
c INITIALIZATION CALLS.
0006 CALL TURT (1,2+3+4)
0007 CALL DIMN (1,0,1.0}
0008 CAMLL MARG (0.5}
0009 CALL STAB (4,XTABS)
C
C
Ceees PAGE sseese sesessseee
c
0010 CALL STRT (005827.1)
c
4 THE FOLLOWING STATEMENTS PRINT THE RULES, BOXHEACS, AND PAGE MEACING.
oo1t CALL RULX (1.64142¢5.0¢2"
0012 CALL RULX (2.2, o5)
0013 CALL RULX 17,91,
0014 CALL RULY (1.6,14207.942)
0015 CALL RULY (1.6,2.0+7.9,2)
0016 CALL RULY (1.643.047.9,2)
0017 CALL RULY (1.644.C¢7.9+2)
0018 CALL RULY (1.645:0+7.9:2)
0019 CALL RULD (1.641:20¢242424002)
0020 CALL SIZE (T)
0021 CALL PANT (1,8415:9+* FUNCTION®40.0}
0022 CALL PRNT (2.1,1 ¢ ANGLE*,0.0)
0023 CALL TYPE (0,3,0+14)
0024 CALL PRNT (2,0,2.365,11,*SIN COS TAN',0.7308)
o025 CALL TYPE 14,1,2418)
0026 CALL BBUF
0027 CALL PRNT (=1.4=14¢234 TRIGONOMETRIC FUNCTIONS®*+0.15)
0028 CALL EBUF (1.0,3.1:3)
c
c THE FOLLOWING STATEMENTS PRINT THE CREDIT LINE AND ALSD SAVE 17 FOR
4 USE ON THE NEXT PAGE.
0029 CALL GRID (1)
0030 CALL SAVE (1)
0031 CALL NOOP (5)
0032 CALL RULX 18,6,2.5+3.7,1)
0033 CALL TYPE (1,1,414+10)
0034 CALL BBUF
003% CALL SPEC (2)
0036 CALL PRNT (~1,¢=1.067,%1 PREPARED BY INAUTICAL IALMANAC 1OFFICE. U
/.1S. INAVAL 10BSERVATORY',0.07)
0037 CALL SPEC (1)
0038 CALL EBUF (8.9+3.1.3)
E 0039 CALL NOOP ($)
0040 CALL SAVE (1,INOT
(4
0041 1F (IND) 130,1300120
0042 120 WRITE (641
0043 sTQp 2
0046 130 CALL TYPE (2,1,1+10) o
0045 CALL SCAR (2,465,1.63,243424'R") 3
3 0046 CALL OSET (2.5,1.5) E
{ 1
c THE FOLLOWING LOOP PRINTS TWE BCOY CF THE TABLE. 3
€ NOTE USE OF *TAB STOPS® AND NEGATIVE CCORDINATE OPTION. p
0047 00 170 I=1,181,% 3
0048 TANGLE = | - 1
ana9 ANGLE = FLOAT(IANGLE) ® 0.017453293
0050 CALL RTRN (0.1381 3
i 0051 CALL TABB i
cos2 CALL INUP B=1.y-1440.3,1ANGLELO Y)Y
0053 CALL TaBS
0054 SINANG = SINUANGLE)
0055 CALL FNUM (=149-1000.74SINANGSs101)
00%6 CALL TABSB
0057 COSANG = COSUANGLE)
0058 CALL FNUM (~14¢=1440.7,COSANG,Ssl01) >
] 0039 CALL TABB
1 0060 IF (IANGLE=90) 150+160,150C
(4 ODOUBLE PRECISION TANGENT IS USEC.
0061 150 DANGLE = DFLOAT(IANGLE) ® 0,017453292519900
2 TANANG = OTANIDANGLE)

CALL ONUM (=Loeo=1esOuTiTANANGSs20 it
GC Y0 170

160 CALL DELX (0.4) i
CALL SCAR (=1.4-144241424°7%)

170 CONTINUE

47

0068
0069
0070
0071
0072

0073

007«
cors
0076
oory
0078

0106
o107
0108

FCRTRAN IV G LEVEL 1s »aIN Care = 7320s [SVATVEN

C
(4 PAGE IDENTIFICATION,
CALL ZONE t2)
CALL SQEZ t2)
CALL PRNT (9.7,2.92047,*1 PAGE 1',0.C8)
CALL SQEZ t1)
CALL 1DEN (9.9,6.C2)

Ceees DAGE 2 eee

s rerostt e e riorrrorNersest reesrrenesssssssnsstsssnsnsy

CALL PAGE
{2 THE FOLLOWING STATEMENTS PRINT THE CRECIT CINE, SAVEC FRCM Tw¢
C PREVIOUS PAGE, ANC THE PAGE HEACING.

CALL GRID (1)

CALL SPIL (1)

CALL TYPE 11,2,1.18)

CALL PRNT (140,1.428,29,*1LIST CF (PHYSICAL TCONSTANTS® ,0.15)
CALL RULX (142424004%.2,3)

THE FOLLOWING STATEMENTS PRINT THE BCOY NF THE TABLE.
OATA FOR THE TABLE IS READ IN FROM CARCS,
CALL ZONE (1)
CALL SIZE (12)
CALL MLTP (2404541424 'KM*40,040.2,0.046)
CALL MLTP (3.6,5. ¢ *OAYS*,0.040.24C0042)
¥ = 1.8
X = 0.5
D0 220 LINE=1,10
Y = ¥ s 0.2
READ (5,2) NUMCHR, (LABEL(ID)s 11,1000 (IVALUE(I),s Is1,3)
LABEL ANC IVALUE ARE CHARACTER ARRAYS FOR CALLS TC PRNT ANC ANUM,
RESPECTIVELY. NUMCHR [S THE NUMBER CF CHARACTERS IN ARRAY LABEL
TC BE PROCESSEC BY PANT.
CALL BBUF
CALL PANT (=l.y=1.9NUMCHR 4LABEL 0,09}
CALL CBUF (IERR WIDTH)
CALL EBUF IY.X,0)
XEND = X ¢ WIDTH + 0,12
X0OTS = AINT (XEND ® 10.0) / 10.0
NDOTS = (4,0 - XCOTS) / 0.l + 1.
CALL MLTC (Y,XDOTSs1s1s1s*.*40.0,0.1,N00TS)
220 CALL ANUM [Y,4,0,0.950,12,IVALUE)
CALL TYPE (242,1.8)
CALL TURN (2)
CALL PRNT (5.573,7.6409423,*(NCT DEFINITIVE VALUES) *,0.06)
CALL TURN (1)

[a¥a¥al

[a¥a¥at

oo

PAGE IDENTIFICATION.

CALL SIZE (10)

CALL SQEZ t2)

CALL PRNT (947,2.92047+"1 PAGE 2',0.06)
CALL SQEZ (1)

CALL IDEN (9.9,6.0,2)

<

Ceoovssssvsvscsccssnsnsosesesssncne
CALL Pass
sToP 1
END

sesssenee

PAGE

€coz

L0 1)

TSN TN

ww

L

ot

B U515

i

o Rnnl

000969

R

000

Sy e S

55 45 s 15 U B

TNNNNNNN

s s i

(4

¥:9:9:9

¥

.cc_1 -accco

&.?_

FERR FOR PR 8

g8838s888

¢

IR 1 TR 1 B R

ps (i

e (v 9
E666

U

888
(BB

HNTATRY

99999

EU A

vhby
(A

Ll

TR Y

WL e

00606

AR

388
Let
e

99

51519

(TRt Y]

v

EEE

ok v

¢l
[

W

£

1

(4
[

50000000

LE60
ov of &

Leit

oy L L

5668
Lot BE LG

IR

1000y

Ud L st LR

2888

9999

9

§

b

see (e

666

Ll

SE b

996

S5%

G068 Wt

vy

gtt

S AL L

(i

LAl

acit .l

R

LiL
Lo
5565

byvy

Lo e

:ooca

9999

AR G S

(IR

N (S U

mb:pb-
1

m: 1094 S .z:m_

$°82£¢9 SOIQYY WIAEI8NGT S HIgYI!
6:9GE9 SOIQY H930d S HINPF
gt SOIAYY S HOOK
Q00 ¢00CEPT CHYAHD) HAST HOM JOHYLS

’ 00y ¥BE CHY
2968000 QI0H3HIS S HIYYI!
922916 °0 09¢1> 118
989Gd "G9E. HU3L WINIAIS

2912822

(0143d A93IEIAIS S HOON: 30 H19H3

uwadou ajdwiwvg 1of spavry jnudug

TRIGONOMETRIC FUNCTIONS

Function
sin cos tan
Angle
0 + 0.00000 + 1.00000 + 0.00000
5 + 0.08716 + 0.99619 + 0.08749

10 + 0.17365 + 0.98481 + 0.17633

35 + 0.25882 + 0.96593 + 0.26795

20 + 0.34202 4+ 0.93969 + 0.36397

25 + 0.42262 + 0.90631 + 0.46631

30 + 0.50000 + 0.86603 + 0.57735

35 + 057358 + 081915 + 0.70021

40 + 0.64279 + 0.76604 + 0.83910

45 + 0.70711 + 0.70711 + 1.00000

50 + 0.76604 + 0.64279 + 1.19175

55 + 0.81915 + 0.57358 + 1.42815

60 + 0.86603 + 0.50000 + 173205

65 + 0.90631 + 042262 + 2.14451

70 + 0.93969 + 0.34202 + 2.74748

75 + 0.96593 + 0.25882 + 3.73205

80 + 0.98481 + 0.17365 + 5.67128

85 + 099619 + 0.08716 + 11.43005

90 + 1.00000 + 0.00000 *

95 + 0.99619 - 0.08715 - 11.43005
100 + 098481 ~ 0.17365 ~ 5.67128
105 + 0.96593 - 0.25882 - 373205
110 + 0.93969 - 0.34202 — 2.74748
115 + 0.90631 - 0.42262 - 2.14451
120 + 0.86603 ~ 0.50000 ~ 173205
125 + 0.81915 - 057358 - 142815
130 + 0.76604 —~ 0.64279 - 119175
135 + 070711 - 070711 — 1.00000
140 + 0.64279 - 0.76604 - 0.83910
145 + 057358 ~ 0.81915 - 0.70021
150 + 0.50000 — 0.86603 = 0:5/735
155 + 0.42262 - 0.90631 - 0.46631
160 + 0.34202 - 0.93969 - 0.36397
165 + 0.25882 - 0.96593 ~ 0.26795
170 + 0.17365 - 0.98481 = 9.17633
175 + 0.08716 -~ 099619 - 0.08749
180 4+ 0.00000 —- 1.00000 - 0.00000

Prepared by Nautical Almanac Office, U.S. Naval Observatory

Page |
005-827 0001

The above Linotron frame has been reduced to 75% of its original size.

49

List of Physical Constants

SuN's FadIUS -« et s s e e s e s e 696,000 km
Earth’s equatorial radius 6,3784 km
Earth’s polar radils. . ..« oocciccccen ve o 6,356.9 km
I TR T 00 L Eop T e s s ety e S R 1,738 km
Earth’s distance from Sun (mean)......... 149,500,000 km
Moon’s distance from Earth (mean) 384,400 km
Flattening of Earth’s spheroid 0.003367
Eccentricity of Earth’s orbit (1960). 0.016726
Length of sidereal year............... 365.25636 days
Length of Moon’s sidereal period 27.32166 days

Prepared by Nautical Almanac Office, U.S. Naval Observatory

Page 2

(not definitive values)

005-827

0002

The above Linotron frame has been reduced to 75% of its original size.

50

Appendix B

FATS Use from Other Programming Languages

The FATS subroutine system utilizes the standard 0S/360 linkage conventions. When a FATS subroutine
has been entered, the following is assumed:

1.
2.

Register 1 contains the address of the first byte of an argument list.
Register 13 contains the address of the first byte of the calling program's save area.

3. Register 14 contains an address within the calling program for return after execution of the

FATS subroutine.

. Register 15 contains the address of the FATS subroutine entry point.
. The argument list consists of a list of contiguous addresses, each occupying a full word. Each

of these addresses refers to the first byte of a word, array, or character string used as an argu-
ment for the subroutine.

. The calling program’s save area is an area 18 full words iong to be used by the FATS subroutine

as temporary storage for register contents, etc. If the calling program was in turn called by a
higher-level program, the second word of the save area should contain the address of the higher-
level program's save area. (This is almost always the case, since even the user's main routine is
called by the System Supervisor).

. For calls to subroutine SAV E, the /ast address in the argument list should have a 1 in the high-

est order (sign) bit,

8. FATS argument types and their internal representation is as follows:

FATS argument Internal Address in argument list

type: representation: refers to:

INTEGER*4 Full word fixed-point* High order byte
number (4 bytes)

REAL*4 Short floating-point* Characteristic byte
number (4 bytes)

REAL*8 Long floating-point* Characteristic byte

(entry DNUM only) number (8 bytes)

REAL*4 Array Array of contiguous Characteristic byte

(entry STAB only) short floating-point of first number in
numbers (4 bytes each) array

Array of A4- String of contiguous First character in

formatted words EBCDIC characters string

(1 byte each)

A1- formatted word One EBCDIC character First character
(entries SCAR and MLTS) followed by 3 blanks

(4 bytes total)

*See /BM System/360 Principles of Operation for a complete description of the internal representation of
fixed and floating-point numbers.

51

ik i

|
.l
|
H
i

The following gives a brief description of how the ahove requirements can be met using various program-
ming languages available on the 360.

FORTRAN IV

All requirements and conventions listed ahove are automaticaily set up by the compiler when the stand-
ard CALL statement is encountered. See FORTRAN 1V (G and H) Programmer’s Guide for further details.

PL/1

Most requirements and conventions listed ahove are set up by the PL/1 compiler when the standard CALL
statement is encountered. The user should utilize the following PL/1 data types:

FATS argument Corresponding PL/1

type: data type:

INTEGER*4 REAL FIXED BINARY (31,0)

REAL*4 REAL FLOAT BINARY (21)
or REAL FLOAT DECIMAL (6)

REAL*8 REAL FLOAT BINARY (53)
or REAL FLOAT DECIMAL (16)

A1l- or A4 formatted CHARACTER strings

words or arrays

Single-dimensional PL/1 arrays correspond to single-dimensioned FORTRAN arrays of corresponding type,
but multi-dimensional arrays are arranged differently by the two compilers.

The PL/1 user must not use array names or character-string names as arguments to FATS subroutines.
Use of array or character-string names causes the PL/1 compiler to place the address of a ““dope vector”’, which
describes the array or string, into the argument list. Since the FATS subroutine is expecting the address of
the first byte of the array or string, an unpredictable program failure will occur.

To circumvent this difficulty with arrays, pass the first element of the array as an argument rather than
the array name. For example:

DECLARE TABSTOPS (4) REAL FLOAT DECIMAL (6)
iNITIAL (1.250, 2.655, 4.750, 6.500),

NUMTABS REAL FIXED BINARY (31) INITIAL (4);

CALL STAB (NUMTABS, TABSTOPS(1));

Passing character strings to FATS subroutines requires a little more effort. The best way is to declare
a based variable whose pointer variable is set to the address of the first byte in the string. The based variable
should then be passed as the subroutine argument. For example:

DECLARE (Y, X, SPACE) REAL FLOAT BINARY (21),

N REAL FIXED BINARY (31,0);
DECLARE NTEXT CHAR (13) INITIAL (‘TITLE OF PAGE');
DECLARE CHARSTRING BASED (POINTR);

POINTR = ADDR (NTEXT);
CALLPRNT (Y, X, N, CHARSTRING, SPACE);

Another, less elegant, way of accomplishing the same thing is to overlay define a variable onto the
beginning of the character string, then pass the defined variable as the subroutine argument. For example:

DECLARE (Y, X, SPACE) REAL FLOAT BINARY (21),

N REAL FIXED BINARY (31,0);
DECLARE NTEXT CHAR (13) INITIAL (‘TITLE OF PAGE');
DECLARE OVERNTEXT DEFINED NTEXT;

CALL PRNT (Y, X, N, OVERNTEXT, SPACE)

The problem with this method is that it causes an |EM 11051 compiler error (ERROR level, completion code
8) because of the unlike attributes of the defined variable and the character string. However, if the COND
parameter of the link edit EXEC statement is high enough, linkage editing and execution of the procedure
can continue.

The linkage editor must have available (in addition to the FATS modules) both the PL/1 and FORTRAN
libraries. To accomplish this, include the following JCL statement for the fink edit step:

//LKED.SYSLIB DD DSNAME=SYS1.PL1LIB,DISP=0LD
/1 DD DSNAME=SYS1.FORTLIB,DISP=0LD

(The DSNAMEs for the FORTRAN and PL/1 libraries may vary, depending on the installation)

53

7%

P1/1 users should consult the PL/1 Reference Manual tor full descriptions of data types, based and pointer
variables, the ADDR function, and overlay definition of variables. The PL/7 (F) Programmer’s Guide contains
descriptions of PL/1 linkage conventions, dope vectors, compiler errors and completion codes, and linkage editor
processing.

ASSEMBLER LANGUAGE

All of the standard linkage conventions can be set up using the standard CALL macro, subject to a few
requirements on the user's part, Assembler language programmers should use the following constant types:

FATS argument Corresponding Assembler Language
type: caonstant type:

INTEGER*4 E

REAL*4 E

REAL*8 0

A1- or A4- formatted C

words or arrays

A group of F, E, or D constants stored contiguously in core corresponds to a single-dimensioned FORTRAN
array of corresponding type.

Assembler language users should use the following procedures within their programs:

Establish a save area within the program 18 full words long. At the entry point of the program, use a
SAVE (14,12) macro. Establish the base register, then load the contents of register 13 into the second word
of the save area. Then load the address of the first byte of the save area into register 13 and leave it there for
the remainder of the program. Whenever a FATS subroutine is ta be called, use the standard CALL macro,
enclosing the list of argument names in parentheses. For array or character string arguments, the argument
name used should refer to the first byte of the array or character string. For calling subroutine SAVE, use
the VL option of the CALL macio. At the end of the program, re-load register 13 with its original contents
(stored in the second word of the save area), then terminate with a RETURN (14,12) macro. The following
example outlines the essentials of the pracedure:

MAIN START 0
SAVE (14.12)
BALR 10,0
USING 10
ST 13 SAVEAREA+4
LA 13 SAVEAREA
CALL TURT, (ONE TWO THREE FOUR)
CALL STAB,(NOTABS,TABSTOPS)
CALL SAVE,(ONE),VL
54
s i i i bt s T e i

R e—

CALL PRNT, (Y, X, NCHAR, CHARCTRS, SPACE)
i CALL SAVE, (ONE, SAVECGDE), VL
CALL PASS
3 L 13, SAVEAREA+4
| RETURN (14.12)
‘ ONE De Y
TWO oc £y
THREE DC F'3
FOUR DC 4’
|
NOTABS DC 5
TABSTOPS De £1.550, 2.655, 4,800, 6.125, 7523'
Y DS E
X DS E
SPACE DS E
SAVECODE DS F
NCHAR De F13
CHARCTRS DC C‘TITLE OF PAGE’
SAVEAREA DS 18F
END MAIN

The linkage editor must have available (in addition to the FATS modules) the FORTRAN library. To
accomplish this, include the following JCL statement for the link edit step:

// LKED.SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=0LD

99

(The DSNAME for the FORTRAN library may vary, depending on the installation; also, if PARM=(NCAL)
is specified on the link edit EXEC statement, it must be overridden).

Assembler language users should consult the Assembler Language manual for full descriptions of con-
stant types, Superviser and Oata Management Macro Instructions for aescriptions of the SAVE, CALL, and
RETURN macros, and the Assembler (F) Programmer’s Guide for further information on linkage to FORTRAN
subroutines.

COBOL

The following, somewhat incomplete, information on COBOL has been obtained from various manuals
and other sources, but has not been actually tested. COBOL external linkage conventions are identical to those
for FORTRAN, so calling FATS subroutines from COBOL should present no special problems. That is, the
FORTRAN STATEMENT:

CALL PRNT (Y, X, NUM, NTEXT, SPACE)
sete up the same linkage as the COBOL statements
ENTER LINKAGE.
CALL 'PRNT" USING Y, X, NUM, NTEXT, SPACE.
ENTER COBOL.

Proper data item types must be used for the parameters passed as arguments to the FATS subroutine.
FORTRAN INTEGE..*4, REAL*4, and REAL*8 variables correspond to COBOL COMPUTATIONAL
(4 bytes), COMPUTATIONAL-1 (4 hytes), and COMPUTATIONAL-2 (8 bytes) elementary items, respec-
tively. A FORTRAN single-dimensioned array corresponds to a COBOL elementary item with an 0OCCURS
clause. FORTRAN A1- or A4- formatted words or arrays correspond to COBOL alphanumeric items,

Both the FATS modules and the FORTRAN library must be made available to the linkage editor.
COBOL users should refer to the appropriate manuals for further information.

56

Appendix C

Program Debugging

This Appendix briefly describes two debugging aids which may be helpful te FATS users. One is a sub-
routine called BYPASS which can be of help in locating the cause of program execution errors. The other is
a program called LINSIM which allows users with Cal Comp* plotter capability to obtain a preview of the
Linotron's printed output pages before a Linotron tape is sent to GPO. Both BYPASS and LINSIM are inde-
pendent of FATS and have applications beyond their usefullness for FATS program debugging.

BYPASS

Programs for Linotron photocomposition utilizing FATS generally contain many CALL statements
referencing FATS subroutines; therefore, a large fraction of such a program’s execution time is spent wi*hin
the called subroutines. Execution errars frequently occur within FATS routines as a resuft of miscode., mis-
computed, or otherwise invalid arguments having been passed from the user’s program. Such error conditions
produce a distasteful diagnostic messages and frequently cause abnormal termination of execution. For many
types of error conditions the diagnostic message may seem rather opague to many Fortran programmers — it
may list addresses, register contents, the PSW, or similar data but shows nothing that relates to the original
program coding.

In such situations BYPASS can aid the user by indicating the specific subroutine call which lead to the
error condition. Once this is established, the arguments appearing in the indicated CALL statement should be
carefully checked and corrected where necessary. Usually this simple procedure leads to a rapid resolution
of the problem.

To utilize BYPASS, a CALL BYPASS statement is placed near the beginning of the user's main program.
This call disables the normal System error facility and substitutes a special error-handling routine. This routine,
called SEXIT, is automatically given control whenever errors resulting in program interruptions (e.g. exponent
overflows, addressing exceptions, etc.) occur. $SEXIT writes a few lines of information regarding the type of
error, then calls a System rautine which generates and writes a “‘save area trace”. This trace follows the most
recently executed subroutine call route, beginning with the user’s main program. For each call, the internal
statement number (ISN) of the calling statement, the name of the called subroutine, and oth'r data is pro-
vided. A quick inspection of this trace usually reveals the FATS subroutine call causing the problem. An
investigation of the arguments involved can then begin.

LINSIM

LINSIM is an independent program for checking out Linotron tapes before they are sent to GPO.
LINSIM reads and interprets the codes on the Linotron tape and utilizes Cal Comp’s basic softwear package
to produce a p/ot tape. This plot tape serves as the control tape for a Cal Comp offline digital pen plotter
which will then draw a simulation of the Linotron’s printed output pages. Naturally, the wide range of type
fonts available with the Linotron cannot be adequately represented by the type of line drawing which the
Cal Comp pen plotters produce. LINSIM therefore represents each printed character by an appropriately
sized and labelled rectangle. The Linotron's horizontal and vertical rules can, of course be easily represented.
The plotted simulation therefore indicates well the overall layout and spacing of the page to be composed,
but cannot show the appearance of the type.

As LINSIM produces the plot tape, it checks for errors in the coding on the Linotron tape, and writes

*California Computer Products, Inc.

57

oo b

appropriate messages when errors are encountered. For each error message, an indicator will also appear on
the plotted simulation of the page, so that the user can more readily locate the source of the error in his
| original program coding.

Source or object modules for BYPASS and LINSIM are available from the Nautical Almanac Office,
U. S. Naval Observatory.

Appendix D
Grid Diagrams

The diagrams on the following pages were designed to assist in the selection of type faces and to
facilitate the access of individual characters. All nine grids are accomodated by FATS. The presentation
of the diagrams is logically ordered and does not resemble the physical arrangement of the character
images on the grids. Linotron composition can proceed once the grid, zone, and shift mode configu-
ration has been established (see subroutines TURT, STRT, and TYPE); individual characters to be
printed are then located by means of their grid location characters (automatically generated by subrou-
tine entries FNUM, INUM, PRNT, etc.). The grid location characters are found at the left extremity
of each of the grid diagrams. They are presented as EBCOIC characters for which the punch-card code
is likewise given (suitable as arguments for FATS subroutine entries SCAR or MLTS). The numeral which
appears to the right of each grid character is its relative width. The resulting printed width depends on the
type size specification; the printed width in Linotren units is the product of the type size in points and
the relative width.

59

GRID

Century Expanded

1

ZONE 1

ZONE 2

ZONE 3

Roman Bold Italic
e raraaar | UNSHIFT SHIFT UNSHIFT “SHIFT UNSHIFT SHIFT
! (1238) 4) 6 5 z 9) 7

(1248) 3 S : 5 S 6 : 6 5 6 6
& 12) [6 & 14 & 15 { 7
$ (11-38) s 9 9 u 12
= (n = 6 — 18 e 5 J 8
/ ()] 6 1 1 i 6

0-38) 3 4 (6 R 5 & i (7
% 0-48) 3 9 % 15 $ 9 $ 9
0-68) ! 6 ? 8 ! 6 v 8 s 8 ? 7
? ©78) * 9

(12:0) i 4 £ 4 0 5 § 5
A (12:1) a 9 A Y] a 10 A i3 a 10 A 1
B (12:2) b 10 B 13 b i0 B i b 9 B 13
C 123 ¢ 8 (& 13 c C 13 c 8 & i3
D (124 d 10 D 14 d 10 D 1 d 10 D 1
E (12:5) e 9 E 14 e 9 E it e 8 E it
f 112:6) £ 1 ¥ 13 f 7 F 13 f 6 F 13
G nzn g 10 G 13 g 10 G " g 9 G 13
H (128) h 10 H 15 h 1 H 15 h ie H 15
| (12:9) i 5 I 8 i 6 1 8 i 6 I 8
) (111 j 6 J 9 j 6 J 9 il 6 J 10
K (11-2) k 10 K i) k 1 K it k 16 K "
L (i1-3) 1 5 L 13 1 6 L 13 1 6 L 12
M (114) m 15 M 16 m 16 M 1 m 16 M V]
N (1) n 10 N 15 n 1 N 14 n 1 N 15
0 (11:6) o 9 0 13 o 10 0 1" 0 9 0 13
P (i p 10 P 12 p 10 P 13 P 10 P 13
Q (11-8) q 10 Q 13 q 10 Q " q 9 Q 13
R (119 r 8 R 1 r 8 R 1 r 8 R it
S ©02) 8 8 S 1l s 8 S 1 8 8 S 1
T ©3) t 7 R 12 t 7 T 12 t 6 T 12
] 04 u i0 U 15 u 1 U 1 u 1 U 15
v 05 v 10 v it v 9 \4 18 v 9 v 13
w (©6) w " w 18 w 14 w 18 w 13 w 1
X o7n X 10 X " x 10 X it z 10 X "
¥ 08) y 10 >] " y 10 Y " y 10 ¥ 13
/4 ©9) 2 8 Z 12 z 9 Z 12 z 8 Z 13
0 (] 0 9 0 9 {1 0 0 9 Y 1
1 m 1 9 1 1 9 K 1 1 9 E "
2 2 2 9 B 11 2 9 L 10 2 9 F 10
3) 3 9 C 10 3 9 M 13 3 9 G 1
4) 4 9 n 1" 4 9 12 4 9 H 12
5 5) 5 9 5 3 o0 10 5 9 1 3
6 6) 6 9 6 9 P 10 6 9 & T
7 (U] 7 9 7 9 Q 10 7 9 v i
8) K 9 8 9 R " N 9 w 18
9 9 9 9 9 9 S 9 9 9 X 1

D
o

e —————

Naval Observatory

GRID 2

ZONE 1 ZONE 2 ZONE 3
Bell Gothic Spartan Book Astr Symbols
ot P! UNSHIFT SHIFT UNSHIFT SHIFT UNSHIFT SHIFT

(1238 i 18 5 9 4 [) 15 (@) 15
= (124.8) - 18 9 ; 5 5 K 10 { L]
& 12 2 3 9 9 9 9 Q 15
$ (11-38) g (5 * 8
- an 9 T E] 5 A 10
/ ©1) 3 9 D> 15 C 15
; 038) = 18 4 9 A 4 [} 15 ® 15
% 0-48) ° 9 3 9 / 6 2
= (068) - 9 0 9) 5 0) m 10 = 12
? ©78) * 10

(12:0) 9 .3 18 9 g 4
A (2.1 a 9 A 9 o 10 A 1 a 1 [g
B 122 b] B 3 b 10 B 3 w 12 A 12
(7 123) c 9 (o 9 - 8 G 1 & B f 9
D 124 4 9 D 9 d 10 D 1l 19} i5 I 1
E (125) e 9 E 9 e 9 E 8 Y 18 . g
3 nze f] F 9 f 6 F] 8 9 A 12
G 27 g 8 G 9 g 10 G 12 € 8 l]
H 12.8) h E] H] h 9 H 12 7 8 | 9
I (29 i 9 1 9 i ¢ | 5 14 15 4 9
J ain J 9 J 9 i 4 J 7 n i } 9
K (11-2) k 9 K 9 k 8 K 10] 9 C] 14
L (113 ' 9 t 9 | 4 t 7 | 9 J 9
M (a1-4) m 9 M 9 m 14 M 14 9 X 12
N (11:5) n 9 N 9 n 9 N 12 P 10 % g
0 (116) o G 0 9 o 9 (o] 13 ¥y 10 ” 9
4 (a7 “« 3] P 9 P 10 P 9 £) n
Q (118 q 9 Q 9 q 10 Q 13 b 15 * 9
R (119 r 9 R] r 6§ R 10 e 15 o 9
S o2 s £l S 9 s 7 S 9 B 1 { s
T 03 t 9 T 9 t 5 1 8 $ 15 !]
1] 04 v 9 u 9 u 9 U 1 [15 2 9
v 0% v 9 Y 9 v 9 v 11 w 15 <+ 12
w ©6) w 9] 9 w 13 w 15 3 15 *]
X ©n x 9 X 9 X 8 X 1 W 12 d 9
Y 08 y 9 Y 9 y 8 Y 10 & 15 o 9
l 09 2 9 z 9 z 8 z 0 In 12 \ 18
0 () 0 9 0 9 4 9 - 12 (@] 15
1] 1 9 e 18 1 9 [5 0 15 . §
2 @ 2 9 ” 9 2 9 | § (¢ 14) 12
3 3) 3 9 1 9 3 9 1 9 ©] 15 ° 9
4] 4 9 8 9 4 9 8 9 $ 15 . 6
5 (5) 5 9 5 9 2 9 ¥ 15 } L]
6 6) 6 9 6 9 3 9 @ 15 . 12
7 " 7 9 7 9 4 9 3 15 T 8
8 @) 8 9 8 9 5 9 Y 15 o 1l
9) 9 9 9 9 6 3 . 12 = 13

(=2}
=

GRID 3

Superiors [Inferiors /| Math & Greek

ZONE 1

ZONE 2

ZONE 3

Superiors Inferiors Math & Greek
Gug tecatim el - UNSHIFT SHIFT UNSHIFT SHIFT UNSHIFT SHIFT
(1238 4 » 4 4 + 12 T 15
- (12.48) 4 4 4 4 K 10 d 6
& 12) A 4 & 9 & 9 % 15
$ (11:38) 9 = 9 - 9
- (1 4 4 [A 10
/ ((3Y) L 4 3% 15 % 15
038 4 ¢ 4 4 Ya 15 % 15
% ©48) s 6 - 12 s 6 + 12
2 ©68) 4 g & 9 % 9 - 9 * 12 % 15
? ©78) 2 9
(12:0) 4 4 4 4
A 12 il 1 4 8 - 1 7 8 a 11 < 15
8 (122) ¢ 6 L 8 » 6 8 8 m 12 <D 14
c 123) < 6 ¢ 8 5 6 - 8 ¢ 9 = it
D 12:4) 4 1 0 8 o 7 5 8 y 10 r 1
E 12:5) s 6 L 8 , 6 % 8 % 16 % 16
f 126 s [L 8 r] v 8 8 9 A 12
G uzn . 6 @ 8 Y 6 ¢ 8 € 8 = 15
H (128) i 7 L 9 N 7 " 9 te 8 ~ 15
| (12:9) e 4 / 5 ‘ 4 i 5 Y 16 16
) (18] 2 4 4 6 ; 4 ’ 6 n 1 o 12
K (12 ki 7 e 8 x 1 X 8] 9 (5] 1
L (113) !y) ' 7 1 4 5 7 (5 6 P 6
M (11-4) Ly 10 L 10 - 10 M 10 o 12 3 12
N (11:5) Ll 7 N 8 - 7 X 8 p 10 e 13
0 (11-6) L. 6 (4 8 o 3 3 8 % 16 % 16
P (i L3 1 L 8 5 ! P 8 = 12 X 12
Q (11-8) * 6 L 8 o 6 q 8 % 16 % 16
R (119 ¢ 6 R 8 v 6 A 8 % 16 % 16
S (%] i 5 § 1 3 5 5 1 B 1 > 15
T ©3) (:] 4 7 ;) r 7 % 16) 16
[V} 04 L 7 t 8 & 7 ‘ 8 Yo 16 Ya 16
v 05) g 6 ¥ 8 " 6 ¥ 8 0 9 v 15
w 06) " 9 lid 1 - 9 W 1 » 16 % 16
X ©n & 8 X 8 7 8 % 8 v 9 Q0 1
Y (08 » 7 ¥ 8 3 7 " 8 % 16 % i6
/4 09 2 6 & 1 % 6 7 1 m 12 = 15
0 (] . 6 o 6 y 4 % 16 Ya 15
I) ' 6 9 : 6 y 12 x 10
| 2 @ & 6 z 9 1 6 e 9 % 16 ¢ 12
T 3 a) g 6 6 4 6 6 % 16 w 12
‘ 4 w ¢ . 9 3 6 9 % 16 v 1
5 5) 3 6 " 6 | [Vs 16 A 13
6 (6) L 6 % 6 \ « % i6 % 1
7 n £ 6 ? 6 ! ‘ % 16 T 8
8) " 6 - 6) 4 Ya 16 v 9
L) @) 0 6 . 6 " 12 Y% 16 = 12

GRID 4

Spartan Heavy / Trade Gothic

ZONE 1

Spartan Heavy

ZONE 2

Trade Gothic

ZONE 3
Trade Gothic Bold

Gid bucsbon Camcil UNSHIFT SHIFT UNSHIFT SHIFT UNSHIFT SHIFT

1238 5) 6 4 - 9) 5
< (1248 ; S 5 4 4 ; [l ¢
& u2) { 6 & 1 & 10 [5
$ (138 2 9 § 8 18
- an - 6 / 3 4 4
/ o] 3] 5 / 6
; ©38) s 5 (6 , 4 % 18 (
% 0438) $ 10 % 16 3 8 $ 8
> 068) ! 5 ? 9 f 6 ? ’ t 5 ?
? (078 * 8

(120 2 4 ’] 4 4
A (131 a 10 A 12 a 8 A 8 a 8 A 8
B b 10 8 10 b 8 B 9 b 8 B 9
c 123 < 7 C 1 6 (® 9 c 8 c 9
D 24 d 10 D 1 d 8 D 9 d & D 9
E (125 e 9 E 9 e 7 E 8 e 8 E 8
f 126 f 6 F 8 t 5 3 1 5 F 8
G a2 g 10 G 13 g 8 G 9 ['4 8 6 £l
H 128 h 10 H 12 h 8 H 9 h 8 H 9
| (129 i $ 1 5 |] | ¢ i ¢ | 5
) (aLh i 5 J 8 | 4 J 5 j .) 5
K (112 k 9 K 10 k K 8 k 8 K 8
L (3 | 5 L | 4 L | ¢ L
M (14 m 15 M 18 m 12 M 1 m 12 L] i
N (11:5) n 10 N 13 n 8 N 9 n 8 N 9
0 16) ° 9 (o] 13 0 1 0 9 0 8 0 g
P (1 p 10 P L] p 8 P 8 p 8 P 9
Q 18 q 10 Q 13 q 8 Q 9 q 8 Q g
R 119 r 6 R 10 f 5 R 9 r 6 R L]
S 02 s S 9 s ? S 8 s] S 8
T 03 t 6 T 8 t 5 T 7 t 5 T 7
U 04 v 10 v 12 U 8 U 9 u 8 [} q
v 05 v 9 v 1 v v 8 v v 8
w 106) w 1 w 5 w 10 w 1 w 10 w 12
X 07 x 9 X 1 X 6 X 8 X 7 X 8
Y 08 y 9 Y 10 y 3 \¢ 8 y Y 8
b4 09 z 8 z 10 z 6 1 8 2 1 8
0 () 0 10 0 8 7 6 0 8 - 18
1 (1] 1 10 3 1 8 t 9 1 8 4
2 @ 2 10 6 2 8 3 9 2 8 [
3 &} 3 10 - 9 3 8 - 9 3 8 L} 9
4 14 4 10 -— 18 4 8 - 18 4) @ 18
5 * 5 10 5 8 [5 § 8 S 8
6 & 6 10 6 8 | 5 6 i & 10
7 7 10 7 8 (5 1 4 I
8 0 8 10 8 8) 5 8 Ll b 4
q (@ 9 10 9 8 % i 9 8 # i

63

4
| \

e ~
FEF"
GRID 5
. .
Special Times Roman
ZONE 1 ZONE 2 ZONE 3
Times Roman Times Roman Bold Spartan Heavy
S st Yanatony | UNSHIFT SHIFT UNSHIFT SHIFT UNSHIFT SHIFT
1238 . 5) 6 . 5 5 5) 3
(12.48) S 6 : 6 : 6 3 6 : 5 : 5
(12 [6 & 15 & 15 Yo 15
$ (11-38) —_ 18 > 9 g 6
- (an - 3 - 9 - [& 1l
/ 1 1 6 Ya 15 / 3
y 038 X 6 (6 s 6 % 16 (6
% 048) $ 9 % 16 $ 9 $ 10
> ©068) X 15 ? 9 1 3 2 £l Y% 15]
? ©78) ¥ 9
(120 i 6 6 2 6 . 6
A (21 a 3 A 14 a 9 A 13 a 10 A 12
B (12:2) b i0 B 13 b 10 B 12 b 10 B 10
C 123 & 9 C 13 c 8 C 13 < 7 C 1
D (124) d 0 D 14 d 10 D 13 d 10 D 1
E 125 e 9 E 13 e 8 E 12 e 9 E 9
3 (126 f 7 F 12 f 6 F 1 f 6 F 8
G 127 g 9 G 14 g 9 G 14 g 10 G 13
H 128 h 10 H 15 h 10 H 1 h 10 H 12
| (129 1 5 1 7 i 5 I 1 i 5 | 5
J ey j 6 J 8 j 6 J 9 i 5 J 8
K (-2 k 10 K 15 k 10 K 16 k g K 10
£ (1%)] | 5 L 13 1 5 L 12 | 5 L 7
M (11-4) m 15 M 1 m 15 M Y] m 15 M 1t
N (11-5 n 10 N 15 n 10 N 13 n 10 N 13
0 we o 0 O ° 9 0 °) 0 o
: 4 (i p 10 P 1 p 10 P 1 P 10 P 9
Q (11:8) q 10 Q 14 q 10 Q 1 q 10 Q 13
| R (19 r 7 R 13 r 8 R 13 r 6 R 10
L S 02 s 8 S 1 s 7 S 10 s 1 H 9
t T 3 t 6 B 12 t 6 T 12 6 T 8
U (04 u 10 U 15 u 10 U 13 v 10 U 12
v 05 v 10 v 1 v 9 v 13 v 9 v 1
w 06 w 1" w 18 w 13 w 18 w 1t w 16
X (%)) X 10 X 14 X 9 X 13 x 9 X 1
Y 08 y 10 Y i ¥ L] Y 13 y 9 Y 10
1 ©9 z 9 z 12 z 8 YA 12 z 8 z 10
0 0) 0 9 0 9 / 6 [} 10 & 15
1 () 1 9 + 15 1 9 (6 1 10 t 9
2 @ 2 9 = 15 2 9) 6 2 10 % [
3 3 3 9 15 3 § * 9 3 10 - 18
4 U] 4 9 + 15 4 3 6 4 10 -]
3 (5) S 9 5 9 # 1 5 10 * 8
6 (6 6 9 6] @ 1 6 10 N 3
1 n i 9 7 9 B 1 7 10 . s
8 ®) 8] 8 9 y 10 8 10 > 15
9 9) 9 9 9 9 % 15 9 10 § 9
64
1

|

.

|

‘ GRID 6

NRL Grid

1

i ZONE 1 ZONE 2 ZONE 3

‘f Math Symbols Times Roman Italic Times Roman

O athie Tancaton) | UNSHIFT SHIFT UNSHIFT SHIFT UNSHIFT SHIFT

\ 1238) ST (9 o 12 - 6 [6

\ < (12:4.8) - 15 + 15 T 8 I 12 (6) 6

i & (12) = 15 =< 15 v 9 - 6
$ (1138)) 9 12 m 12
- (1 X 15 = 15 X 10 L4 14
/ 1) + 15 A 6 ; 6
! 038) * 15 > 15 U 1 4} 14 : 6
% (0-48) 1 9 < 15 w 12 ¢ 3
> 0-68) ¢ 12 ! 6 - 18 £ 9 \ 6] 6
? 10-78) . 9

(12:0 ~ 15 9 7 - 18 P 10
A 21 3 7 ° 7 a 10 A 13 a 9 A 1+
B (122) i i 1 7 b 10 B 12 b 10 B 13
C (12:3) 3 7 2 7 ¢ 9 C 13 C 9 € 13
D (12:4) 3 7 3 7 d 10 D 14 d 10 D it
E (12:5) H 7 4 7 e 9 E 12 e 9 E 13
F (126) 3 1 8 7 ' 6 iz 12 { 7 F 12
G 27 & 7 8 7] 10 G 1 g 9 G "
H (128 3 7 K 7 h 10 H 15 h 10 H 15
| (129 H 1 8 7 i 5 I 7 i 5 I 1
) (11-1) $ 1 s 7 i 5 J 9 j 6 J 8
K (112 ' 6 o 7 k 9 K " k 10 K 15
L (11-3) > 15 1 7 1 5 L 12 1 5 L 13
M (11-4) < 15 2 7 m 15 M 17 m 15 M 17
N (115 « 15 3 7 n 10 N 15 n 10 N 15
0 a6 | 4 4 7 o 10 (] 1 o 10 (0] it
P (L) © 12 5 7 p 10 P 12 P 10 P 1
Q (11-8) / 1 6 7 q 10 Q It q 10 Q "
R (119) 4 ! 7 1 r 1 R 13 r 7 R 13
S ©2 12 18 8 ? 5 8 S 1 s 8 S 1
T 03 1 18) 7 t 6 T 1 t 6 T 12
u 0-4) ! ‘ . ‘ u 10 14 15 u 10 U 15
v 05 >] ’] v 9 Vv 13 v 10 v 18
w (6} t 9 9 w 13 w 17 w " w 18
X on A " + 9 53 9 X 13 X 10 X "
Y 0w F) 3 J) y) Y y 10 Y u 3
1 09 = 15 L 7 z 8 Z 12 z 9 Z 12
0 (] v 12 0 9 a 1 0 9 & 15
1 m h 10 { 9 1) DU 1 9 9 9 §
2 2 'a 18 } 9 2 9 y 10 2 9 % U :
3 @ % 18 # 15 3 9 8 9 3 9 I n
4) 5 8 = 5 4 9 € 8 4 9 A 12
5 (5 2 8 5 9 (4 8 S 9 1 "
6 6) % 8 6 n il 6 v 15
7 m 1y 18 7 9] 9 4 9 / 6
8 ® % 18 8 9 X 10 8 9 p 12
9 9 1% 18 9 9 A 10 9 9 . 9
65

GRID 7
Crystal Data

1 ZONE 1 ZONE 2 ZONE 3
Bodoni Book Roman Bodoni Bold Roman Inferiors & Greek
Gag_Raeation Charsctil WNSHIFT SHIFT UNSHIFT SHIFT UNSHIFT SHIFT
1238 . 6 | 5 ; 6 ' =
1248 5 6 b 6 (6) 6 = 12 =
& 12 { 5 & 15 / 6 + 12
) 38 b 9 3 ! : !
- 5 3 4 - 6 9
[0})) 1]
038 5 6 [5 o 6 t 5
% 048 % 16 ! 6 6 9
: > (068) | 3 18 [3] 3 9 A
i ? 078 ?]
;i 120 5 5 + 12 - 1
H A 12 a 9 A 13 a 10 A) a
a; 8 122) b 10 B 12 b 12 B 1] i 6 B8
1 C 123 « 9 ¢ 13 ¢ 10 C 13 6 y 10
; 0 24 d 10 D B d D 5 r 5 9
; E 129 €] E 12 e 10 E 14 . 3 € 8
', f 126 (i 6 F H f] F 13 / ¢ A 12
& G 21 g 9 G 13 3 1 G 14 P 6 1 9
H 128 h 10 H 14 h 12 H 16 » 7 o E]
| 9 i 5 I i 6 1 8 i ¢ a 9
J B0 } 6 J 8 j 1 3 10 ; ¢ (4 9
K (12 k 10 K 13 k 12 K 15 i K
L 13 | 5 L 12 1 6 L 13 5 2 A 0
M 4 m 15 M 16 m 17 M 1 i 10 m 2
N (115 n 10 N 14 n 12 N 14 i v 9
0 (11-6) 0 9 (0] 14 o 1 0 5 5 6 @ 12
P ({1 p 10 P 12 P 12 P 13 i B 12
Q (& q 10 Q 1 q 12 Q s ~ 6 ¥ 1
R (e r 1 R 13 r 9 R 15 E 3 8 10
S 02 s 8 S 1 s 8 S 11 2 5 € §
T 03 t 6 T 12 t 1 T 13 N 4 I 13
1} 04 u 0 L 13 u 12 U 15 it 1 v 10
v 05 v 9 V 13 v 9 \4 4 " 6 A
w 06 w 3 W 18 w 3 w 18 " 9 K
X © X 9 X 13 X 1 X ¢ 3 8 A
Y 08 y 9 Y 13 ¥ 10 X i " 7 1
1 09 2 8 7 I z 9 Z 12 6 L 8
0 0 0 9 0 0 s : 6 +
1 (1) 1 9 ¥ 6 1 12 1 9 ' 6 vV 8
2 2) 2 4 ¢ 2 12 2 9 v f ~ 5
3 3 3] 6 3 z 3 9 s 6 A
4) 4 9 * 9 4 12 4 9 " 6 (S 9
: | 5 5 3 5 n 5 s 6 e)
[6) 6] 6 12 6 9 " 6 ¢ 4
[7 7 f E 12 7 9 6 e 9
8 [8 4 8 8 4 . 6 a [
9 9 9 4 9 12 9) " 6 o 9 §
66

4 ledpr ek~ g . cicnd e
et

GRID 8

Helvetica

ZONE 1 ZONE 2 ZONE 3
| Helvetica Roman Helvetica Bold Helvetica Italic Bold
!
' SEaLD Yancatons | UNSHIFT SHIFT UNSHIFT SHIFT UNSHIFT SHIFT
1238 5) 6 ; 5 - § 4
(1248 : 6 £ s b : ¢ £
(12 [6 & &
$ (1138 2 18 § ¢ & 8
- a1 - /i 8 - -
/ o1] (3 B i
038 5 (6 g 5 % ¢ R =
048 $ 10 % 16 S) $
> ©68) ! 6 2 1 ! 5 ? ! 2 |
? ©78) &
120 5 5 ' g
A a2 a 10 A 12 a 1 A a A
B 22 b n B 13 b B b B
C 123 c 10 (0} 13 c 10 Cc c C
i D w d DI d D d D
E (125 e 10 E 12 e E e E
F 126} f 3 F 1 f 6 F [} f C E
G 127 g 1 G 14 g i G 14 g () :
H (28 h 1 H 13 h 1 H 1 h H
| 129 1 5 | 5 i 5 | 6 i I 6
J 1 i 5 J 4 i 5 J 10 j J
K 2 k 10 K 1 k 10 K 3 k [K
[(11-3) | 5 L 1 } 5 3 1 [} 5 s
M (4 m 16 M 16 m 16 M 3 m M
N (115 n 1 N 13 n i N 1 n N
0 (16 o 1 (0] 1 o 1 o 1 o o ¢
| P urn p i e 12 P 1 P P P
| 0 we ARkl Q u q QRN q Q
E R (9 r 1 R 13 r R 13 r R
E $ 02 s 9 S 12 s 10 S 12 s 9 S
i T 03 t 6 i I t 6 Ly] t 6 T 10
I U 04 u 1 U 13 u I U 13 u i v
F v 05 v 9 Vv 12 v 10 v 12 v 9 v
| w 06) w 18 w &) w 1t w 1 w i w 16
i X o x 10 X 12 x 10 X x 4 X 1
Y 08 y 9 Y 12 y 10 i ! y 3 Y i
; l "9 z 9 A 1 2 £l 7 1 z] 2
F 0 (0 0 10 0 10 / 5 0 | = 8
| 1 m 1 10 . L 1 10 t 10 1
& Z @ 2 0 2 10 t 10 2
'5’ 3 a3 3 10 ~ 8 3 10 - 9 3 ! q
| 4 0] 4 10 . i 4 10 —_— ¥ 4q @ ¥
't 5 ®) 5 10 5 10 [6 5 D 5
| 6) 6 0 6 10] i 6 &
| 1 o 7 10 7 10] 3 7 1
j, 8 " 8 10 8 10) 5 8 10 5
(] 9 9 10 9 ¢ % b 9 # 1
|

GRID 9

Census Gothic

ZONE 1 ZONE 2 ZONE 3
Spartan Book (Cond) Spartan Heavy (Cond) Spartan Heavy
OEaC B Manaatany | UNSHIFT SHIFT UNSHIFT SHIFT UNSHIFT SHIFT
(1238 s) 5 5 5) 5
< (1248 $ 9 % 16 $ 9 % 16 s 10 % 3
I & it] - 5 & 12 &
$ 138 5 + 18 . ¢
=) = 8 18 - 8 £ 8
/ ©n (5 ! 5 |
- 038 i 5 : 9 7 5 , 5)
% (048 6 — 18 & (6
> 063 9 ? 3 g 2 18 3 !
? ©78) - 9
(120) - 9 ; - 9 ; 5
A (2 8} 9 A 1l a 8 A 10 a 10 A
8 2 b 9 B 10 b 8] 5 b 0 B 10
[(123 c 8 @ 10 3 7 C 9 (: C
D 128 d 9 D 1 d 8] 10 d D
£ (125 e 8 3 8 e 8 3 e § E 9
F (126 t 6 F] t 6 F f b F 8
G zn g 4 (] 1 [] 8 G 10 g 10 G
H (128) h 9 H 11 h 8 L] 10 h 10 H
| (129) i ‘ { 5 i 4 ! 5 i $ | 5
J -y i 4 J 7 i 4] i L] J %
K 2 k 9 K 1l k 8 K 4 k L] K 10
L (&) { 4 (5 2 ! 4 L ! L
M (11.4) m 14 M 15 m 12 M 1 m M 1t
N (11:5) n g N i n e N 1 n 0 N 3
0 (11-6) 0] Q {1) 8 0 10 o y (o] 13
P (1 p 9 P g p 2 P g P P §
Q (118) q 9 Q i q 8 Q 10 q 1€ Q 13
R (11-9) r 1 R 10 r 6 R 9 r 6 R 10
S 02) s 8 S 5 s S 8 s S 9
T 03) t 6 T 9 t 6 T 8 t 6 T 8
I} 04] L] u 1 v 8 U 10 u 10 v 12
v ©5) v] \ 1 v 8 v 10 v 4 v 1
w 0.6) w 13 w 16 w 12 w 18 w 1 w 1%
X on X 9 X 10 x g X 10 x X n
Y 08) y 9 Y 10 y 8 Y 9 y 9 Y 10
l 09 b4 8 2 10 1 1 9 z 8 7 3 10
0 (0] 0 9 (] g # 1] 10 L
1 i} 1 9] 1 a : ¢ 1 1
2 2 2 9 A 9 2 L] . 9 2 1€
3) 3 9 9 3 (] @ i 3 1t]
4 w 4 4 / 6 4] / ¢ 4 (B
5 (] 5 9 5 g 1 9 5
(3 (6) 6 9 6 9 1 9 6 (L
7 (U] 7 L] 7 3 L 7 1
8) 8 9 8 9 5 8 (L
9) 9 q 9 4 ¢ 9 9 '
68

The following is an alphabetical list of FATS control section and entry names. FATS users should
avoid naming any of their own subprograms, subprogram entry points, or common blocks any of

these names.

Appendix E

FATS Control Section and Entry Names

ANUM
ASIS
BBUF
CBUF
CLER
COmMPOZ
DELX
DELY
DIMN
DNUM
EBUF
FNUM
GRID
IDEN
INUM
LINBUF
MARG
MLTC
MLTP
NOOP
00DD
OSET

PAGE
PASS
PRNT
RTRN
RULD
RULE
RULX
RULY
SAVE
SCAR
SETABS
SHFT
SIZE
SPEC
SPIL
SQEZ
STAB
STRT
TABB
TERM
TURN
TURT

69

TYPE
ZONE
8CLS
SCORD
SDMP
$IwWD
SNUMBR
SOPN
SOUTPT
SREAD
SRESET
SSAVE 1
$SAVE 2
SSAVE 3
SSHFTR
SSPLT
STOBIN
81

$2

83

$4

86

s i

L e eSS Tt i

Appendix F

FATS Subroutine Summary

3 Name Arguments Pg.
t
:]TI'U RT |grid 1 '|grid2 '|grid3 !'|grid4d ' 14
o DIMN |stand. *|user 2
s length length 15
§STRT |job '| frame ! 16
s PAGE 16
i—ngEN ¥ 2l | turret ! 16
| TERM 17
PASS 1
TURN |orient. ! 18
TYPE |[turret '|zone '|shift '|size ! 19
GRID |turret ' 19
§ZONE zone ! 19
3SHFT |mode ' 19
§SIZE_|points ' 19
SQEZ |aspect '
ratio 20
'SPEC [face '
code 20
PRNT |Y 21X *lcount '|chars. | blank Z
size 21
MLTP |Y 21X *| count '|chars. | blank ?| AY 2l AX -| repeats '
2 size 21
Qf
E[SCAR |Y X *lturret '| zone 'fshift '|char. ° 21
gMLTC Y 1% 2l turret '[zone !'[shift '|char. *| AY 2l AX 2| repeats '| 21
3 FNUMY il b 2| field 2| number 2| no. "I'sign '| min.lead.’
size decimals | code digits 24
DNUM|Y X | field 2| number °| no. "I'sign 'l min.lead.
size decimals | code { digits 24
K Integer*4 5 Real*8
Real *4 “ Array of Real *4 words

3 Array of characters in A4 - formatted 4-byte words
Single character in an A1 - formatted 4-byte word

70

FATS Subroutine Summary

o PN il e e g I o

T |
Name Arguments : Pg. |
INUM |Y 21X *1field *| number '|sign "I min. ! ' |
3 size code digits 26 |
gANUM|Y X | field ?|count '|chars. °* ‘ |
S size 7 27 |
ZlRULX |Ystart | Xstart 2 Xstop ?| weight ' .1 29
B|RULY |Ystart 2| Xstart | Ystop 2| weight ' J% 29
RULD |Ystart 2| Xstart 2| Ystop 2{ Xstop ?|weight ' 29 |
STAB |length ' |coords. ° 30
MARG]|left 2
. margin 30
g RTRN [space 2 30
Z|TABB 30
SDELY |AY ? 30
DELX |AX 2 30
OSET |Y 2 2 30
_|SAVE |area "error !
s code 32
YSPIL |area ! 32
CLER |area L 32
£ BBUF 35
S|EBUF |Y 21X 2| position '
8 cade 35
E[CBUF |error ' | line 2 (
code width 35 j
JASIS |count '|chars. °* 38 |
E|NOOP |no. of ' i
blanks 39
: Integer *4 5 Real*8 j
“ Real*4 ® Array of Real *4 words

* Array of characters in A4 - formatted 4-byte words
& Single character in an A1 - formatted 4-byte word

Al

